Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28421042
PubMed Central
PMC5378795
DOI
10.3389/fmicb.2017.00526
Knihovny.cz E-zdroje
- Klíčová slova
- Aedes vexans, Culex pipiens, Wolbachia, arbovirus, disease ecology, flaviviridae,
- Publikační typ
- časopisecké články MeSH
Symbiotic microbial communities augment host phenotype, including defense against pathogen carriage and infection. We sampled the microbial communities in 11 adult mosquito host species from six regions in southern Ontario, Canada over 3 years. Of the factors examined, we found that mosquito species was the largest driver of the microbiota, with remarkable phylosymbiosis between host and microbiota. Seasonal shifts of the microbiome were consistently repeated over the 3-year period, while region had little impact. Both host species and seasonal shifts in microbiota were associated with patterns of West Nile virus (WNV) in these mosquitoes. The highest prevalence of WNV, with a seasonal spike each year in August, was in the Culex pipiens/restuans complex, and high WNV prevalence followed a decrease in relative abundance of Wolbachia in this species. Indeed, mean temperature, but not precipitation, was significantly correlated with Wolbachia abundance. This suggests that at higher temperatures Wolbachia abundance is reduced leading to greater susceptibility to WNV in the subsequent generation of C. pipiens/restuans hosts. Different mosquito genera harbored significantly different bacterial communities, and presence or abundance of Wolbachia was primarily associated with these differences. We identified several operational taxonomic units (OTUs) of Wolbachia that drive overall microbial community differentiation among mosquito taxa, locations and timepoints. Distinct Wolbachia OTUs were consistently found to dominate microbiomes of Cx. pipiens/restuans, and of Coquilletidia perturbans. Seasonal fluctuations of several other microbial taxa included Bacillus cereus, Enterococcus, Methylobacterium, Asaia, Pantoea, Acinetobacter johnsonii, Pseudomonas, and Mycoplasma. This suggests that microbiota may explain some of the variation in vector competence previously attributed to local environmental processes, especially because Wolbachia is known to affect carriage of viral pathogens.
Biology Centre of ASCR Institute of ParasitologyCeske Budejovice Czechia
Cooperative Institute for Research in Environmental Sciences University of ColoradoBoulder CO USA
Department of Biology University of Massachusetts BostonBoston MA USA
Department of Ecology and Evolutionary Biology University of ColoradoBoulder CO USA
Department of Pediatrics University of California San DiegoLa Jolla CA USA
Faculty of Science University of South BohemiaCeske Budejovice Czechia
Zobrazit více v PubMed
Alto B. W., Reiskind M. H., Lounibos L. P. (2008). Size alters susceptibility of vectors to dengue virus infection and dissemination. Am. J. Trop. Med. Hyg. 79, 688–695. PubMed PMC
Araújo A. P., Araujo Diniz D. F., Helvecio E., de Barros R. A., de Oliveira C. M., Ayres C. F., et al. . (2013). The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management. Parasit. Vectors 6:297. 10.1186/1756-3305-6-297 PubMed DOI PMC
Atyame C. M., Delsuc F., Pasteur N., Weill M., Duron O. (2011). Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol. Biol. Evol. 28, 2761–2772. 10.1093/molbev/msr083 PubMed DOI
Bando H., Okado K., Guelbeogo W. M., Badolo A., Aonuma H., Nelson B., et al. . (2013). Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci. Rep. 3:1641. 10.1038/srep01641 PubMed DOI PMC
Bian G., Zhou G., Lu P., Xi Z. (2013). Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl. Trop. Dis. 7:e2250. 10.1371/journal.pntd.0002250 PubMed DOI PMC
Bonin A., Paris M., Frérot H., Bianco E., Tetreau G., Després L. (2015). The genetic architecture of a complex trait: resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti. Infect. Genet. Evol. 35, 204–213. 10.1016/j.meegid.2015.07.034 PubMed DOI
Bonizzoni M., Gasperi G., Chen X., James A. A. (2013). The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468. 10.1016/j.pt.2013.07.003 PubMed DOI PMC
Bordenstein S. R., Theis K. R. (2015). Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13:e1002226. 10.1371/journal.pbio.1002226 PubMed DOI PMC
Bourtzis K., Dobson S. L., Xi Z., Rasgon J. L., Calvitti M., Moreira L. A., et al. . (2014). Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop. 132(Suppl.), S150–S163. 10.1016/j.actatropica.2013.11.004 PubMed DOI
Brooks A. W., Kohl K. D., Brucker R. M., van Opstal E. J., Bordenstein S. R. (2016). Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14:e2000225. 10.1371/journal.pbio.2000225 PubMed DOI PMC
Caballero N. (2016). Straight from R to JS: Create Interactive Visualizations from R. Available online at: https://github.com/nachocab/clickme
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. . (2008). BLAST+: architecture and applications. BMC Bioinformatics 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC
Carvalho-Leandro D., Ayres C. F., Guedes D. R., Suesdek L., Melo-Santos M. A., Oliveira C. F., et al. . (2012). Immune transcript variations among Aedes aegypti populations with distinct susceptibility to dengue virus serotype 2. Acta Trop. 124, 113–119. 10.1016/j.actatropica.2012.07.006 PubMed DOI
Charan S. S., Pawar K. D., Severson D. W., Patole M. S., Shouche Y. S. (2013). Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus. Parasitol. Res. 112, 2627–2637. 10.1007/s00436-013-3428-x PubMed DOI
Chouaia B., Rossi P., Epis S., Mosca M., Ricci I., Damiani C., et al. . (2012). Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 12(Suppl. 1):S2. 10.1186/1471-2180-12-S1-S2 PubMed DOI PMC
Chouin-Carneiro T., Vega-Rua A., Vazeille M., Yebakima A., Girod R., Goindin D., et al. . (2016). Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to zika virus. PLoS Negl. Trop. Dis. 10:e0004543. 10.1371/journal.pntd.0004543 PubMed DOI PMC
Ciota A. T., Ehrbar D. J., Matacchiero A. C., Van Slyke G. A., Kramer L. D. (2013). The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution. BMC Evol. Biol. 13:71. 10.1186/1471-2148-13-71 PubMed DOI PMC
Ciota A. T., Matacchiero A. C., Kilpatrick A. M., Kramer L. D. (2014). The effect of temperature on life history traits of Culex mosquitoes. J. Med. Entomol. 51, 55–62. 10.1603/ME13003 PubMed DOI PMC
Cohen C., Toh E., Munro D., Dong Q., Hawlena H. (2015). Similarities and seasonal variations in bacterial communities from the blood of rodents and from their flea vectors. ISME J. 9, 1662–1676. 10.1038/ismej.2014.255 PubMed DOI PMC
Coon K. L., Vogel K. J., Brown M. R., Strand M. R. (2014). Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739. 10.1111/mec.12771 PubMed DOI PMC
Correa C. C., Ballard J. W. O. (2016). Wolbachia associations with insects: winning or losing against a master manipulator. Front. Ecol. Evol. 3:153 10.3389/fevo.2015.00153 DOI
Crotti E., Damiani C., Pajoro M., Gonella E., Rizzi A., Ricci I., et al. . (2009). Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ. Microbiol. 11, 3252–3264. 10.1111/j.1462-2920.2009.02048.x PubMed DOI
Cupp E. W., Hassan H. K., Yue X., Oldland W. K., Lilley B. M., Unnasch T. R. (2007). West Nile virus infection in mosquitoes in the mid-south USA, 2002-2005. J. Med. Entomol. 44, 117–125. 10.1093/jmedent/41.5.117 PubMed DOI PMC
D'Amore R., Ijaz U. Z., Schirmer M., Kenny J. G., Gregory R., Darby A. C., et al. . (2016). A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics 17:55. 10.1186/s12864-015-2194-9 PubMed DOI PMC
da Moura A. J., de Melo Santos M. A., Oliveira C. M., Guedes D. R., de Carvalho-Leandro D., da Cruz Brito M. L., et al. . (2015). Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus. Parasit. Vectors 8, 114. 10.1186/s13071-015-0706-8 PubMed DOI PMC
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat Method 9, 772. 10.1038/nmeth.2109 PubMed DOI PMC
Dennison N. J., Jupatanakul N., Dimopoulos G. (2014). The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 3, 6–13. 10.1016/j.cois.2014.07.004 PubMed DOI PMC
Dodson B. L., Hughes G. L., Paul O., Matacchiero A. C., Kramer L. D., Rasgon J. L. (2014). Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl. Trop. Dis. 8:e2965. 10.1371/journal.pntd.0002965 PubMed DOI PMC
Dohm D. J., O'Guinn M. L., Turell M. J. (2002). Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 39, 221–225. 10.1603/0022-2585-39.1.221 PubMed DOI
Duguma D., Hall M. W., Rugman-Jones P., Stouthamer R., Terenius O., Neufeld J. D., et al. . (2015). Developmental succession of the microbiome of Culex mosquitoes. BMC Microbiol. 15:140. 10.1186/s12866-015-0475-8 PubMed DOI PMC
Dutra H. L. C., Rocha M. N., Dias F. B. S., Mansur S. B., Caragata E. P., Moreira L. A. (2016). Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19, 771–774. 10.1016/j.chom.2016.04.021 PubMed DOI PMC
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acid Res. 32, 1792–1297. 10.1093/nar/gkh340 PubMed DOI PMC
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. 10.1038/nmeth.2604 PubMed DOI
Faria V. G., Martins N. E., Magalhães S., Paulo T. F., Nolte V., Schlötterer C., et al. . (2016). Drosophila adaptation to viral infection through defensive symbiont evolution. PLoS Genet. 12:e1006297. 10.1371/journal.pgen.1006297 PubMed DOI PMC
Floore T. G. (2006). Mosquito larval control practices: past and present. J Mosquito Control Assn. 22, 527–533. 10.2987/8756-971X(2006)22[527:MLCPPA]2.0.CO;2 PubMed DOI
Gaio A. de O., Gusmão D. S., Santos A. V., Berbert-Molina M. A., Pimenta P. F., Lemos F. J. (2011). Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasit. Vectors 4:105. 10.1186/1756-3305-4-105 PubMed DOI PMC
Gimonneau G., Tchioffo M. T., Abate L., Boissière A., Awono-Ambéné P. H., Nsango S. E., et al. . (2014). Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect. Genet. Evol. 28, 715–724. 10.1016/j.meegid.2014.09.029 PubMed DOI
Glaser R. L., Meola M. A. (2010). The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5:e11977. 10.1371/journal.pone.0011977 PubMed DOI PMC
Guidi V., Lehner A., Lüthy P., Tonolla M. (2013). Dynamics of Bacillus thuringiensis var. israelensis and Lysinibacillus sphaericus spores in urban catch basins after simultaneous application against mosquito larvae. PLoS ONE 8:e55658. 10.1371/journal.pone.0055658 PubMed DOI PMC
Hegde S., Rasgon J. L., Hughes G. L. (2015). The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15, 97–102. 10.1016/j.coviro.2015.08.011 PubMed DOI PMC
Hoffmann A. A., Montgomery B. L., Popovici J., Iturbe-Ormaetxe I., Johnson P. H., Muzzi F., et al. . (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476, 454–457. 10.1038/nature10356 PubMed DOI
Huerta-Cepas J., Serra F., Bork P. (2016). ETE 3: Reconstruction, analysis and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638. 10.1093/molbev/msw046 PubMed DOI PMC
Hughes G. L., Dodson B. L., Johnson R. M., Murdock C. C., Tsujimoto H., Suzuki Y., et al. . (2014). Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc. Natl. Acad. Sci. U.S.A. 111, 12498–12503. 10.1073/pnas.1408888111 PubMed DOI PMC
Hussain M., Lu G., Torres S., Edmonds J. H., Kay B. H., Khromykh A. A., et al. . (2013). Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J. Virol. 87, 851–858. 10.1128/JVI.01837-12 PubMed DOI PMC
Johnson K. N. (2015). The impact of Wolbachia on virus infection in mosquitoes. Viruses 7, 5705–5717. 10.3390/v7112903 PubMed DOI PMC
Jones R. T., Knight R., Martin A. P. (2010). Bacterial communities of disease vectors sampled across time, space, and species. ISME J. 4, 223–231. 10.1038/ismej.2009.111 PubMed DOI
Jupatanakul N., Sim S., Dimopoulos G. (2014). The insect microbiome modulates vector competence for arboviruses. Viruses 6, 4294–4313. 10.3390/v6114294 PubMed DOI PMC
Kambris Z., Cook P. E., Phuc H. K., Sinkins S. P. (2009). Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326, 134–136. 10.1126/science.1177531 PubMed DOI PMC
Kilpatrick A. M., Fonseca D. M., Ebel G. D., Reddy M. R., Kramer L. D. (2010). Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. Am. J. Trop. Med. Hyg. 83, 607–613. 10.4269/ajtmh.2010.10-0005 PubMed DOI PMC
Kueneman J. G., Parfrey L. W., Woodhams D. C., Archer H. M., Knight R., McKenzie V. J. (2014). The amphibian skin microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250. 10.1111/mec.12510 PubMed DOI
Lalzar I., Harrus S., Mumcuoglu K. Y., Gottlieb Y. (2012). Composition and seasonal variation of Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities. Appl. Environ. Microbiol. 78, 4110–4116. 10.1128/AEM.00323-12 PubMed DOI PMC
Lanciotti R. S., Kerst A. J., Nasci R. S., Godsey M. S., Mitchell C. J., Savage H. M., et al. . (2000). Rapid detection of West Nile virus from human clinical specimens, field collected mosquitoes and avian samples by a TaqMan® RT-PCR assay. J. Clin. Microbiol. 38, 4066–4071. PubMed PMC
Lu P., Bian G., Pan X., Xi Z. (2012). Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl. Trop. Dis. 6:e1754. 10.1371/journal.pntd.0001754 PubMed DOI PMC
Martinez J., Longdon B., Bauer S., Chan Y. S., Miller W. J., Bourtzis K., et al. . (2014). Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog. 10:e1004369. 10.1371/journal.ppat.1004369 PubMed DOI PMC
Martinez J., Ok S., Smith S., Snoeck K., Day J. P., Jiggins F. M. (2015). Should symbionts be nice or selfish? Antiviral effects of Wolbachia are costly but reproductive parasitism is not. PLoS Pathog. 11:e1005021. 10.1371/journal.ppat.1005021 PubMed DOI PMC
Mayoral J. G., Hussain M., Joubert D. A., Iturbe-Ormaetxe I., O'Neill S. L., Asgari S. (2014). Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proc. Natl. Acad. Sci. U.S.A. 111, 18721–18726. 10.1073/pnas.1420131112 PubMed DOI PMC
Mbewe R., Pemba D., Kazembe L., Mhango C., Chiotha S. (2014). The impact of Bacillus thuringiensis israelensis (Bti) on adult and larvae black fly populations. Malawi J. Sci. Technol. 10, 86–92.
McMurdie P. J., the biom-format team (2014). Biom: An Interface Package (Beta) for the BIOM File Format. Available online at: http://CRAN.R-project.org/package=biom
Micieli M. V., Glaser R. L. (2014). Somatic Wolbachia (Rickettsiales: Rickettsiaceae) levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and resistance to West Nile virus infection. J. Med. Entomol. 51, 189–199. 10.1603/ME13152 PubMed DOI
Minard G., Mavingui P., Moro C. V. (2013). Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit. Vectors 6:146. 10.1186/1756-3305-6-146 PubMed DOI PMC
Moreira L. A., Iturbe-Ormaetxe I., Jeffery J. A., Lu G., Pyke A. T., Hedges L. M., et al. . (2009). A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278. 10.1016/j.cell.2009.11.042 PubMed DOI
Murdock C. C., Moller-Jacobs L. L., Thomas M. B. (2013). Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc. R. Soc. B 280, 20132030. 10.1098/rspb.2013.2030 PubMed DOI PMC
Muturi E. J., Kim C.-H., Bara J., Bach E. M., Siddappaji M. H. (2016). Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasit. Vectors 9:18. 10.1186/s13071-016-1299-6 PubMed DOI PMC
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O'Hara R. B., et al. (2013). Vegan: Community Ecology Package. Available online at: http://CRAN.R-project.org/package=vegan.
Osborne S. E., Leong Y. S., O'Neill S. L., Johnson K. N. (2009). Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog. 5:e1000656. 10.1371/journal.ppat.1000656 PubMed DOI PMC
Osei-Poku J., Mbogo C. M., Palmer W. J., Jiggins F. M. (2012). Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol. Ecol. 21, 5138–5150. 10.1111/j.1365-294X.2012.05759.x PubMed DOI
Pan X., Zhou G., Wu J., Bian G., Lu P., Raikhel A. S., et al. . (2012). Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 109, E23–E31. 10.1073/pnas.1116932108 PubMed DOI PMC
Paris M., David J. P., Despres L. (2011a). Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicology 20, 1184–1194. 10.1007/s10646-011-0663-8 PubMed DOI
Paris M., Tetreau G., Laurent F., Lelu M., Despres L., David J. P. (2011b). Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Manag. Sci. 67, 122–128. 10.1002/ps.2046 PubMed DOI
Primack R. B. (2014). Walden Warming. Chicago, IL: University of Chicago Press.
R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available online at: https://www.R-project.org/
Reisen W. K., Fang Y., Martinez V. M. (2006). Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 43, 309–317. 10.1093/jmedent/43.2.309 PubMed DOI
Robinson D. F., Foulds L. R. (1981). Comparison of phylogenetic trees. Math. Biosci. 53, 131–147. 10.1016/0025-5564(81)90043-2 DOI
Rossi P., Ricci I., Cappelli A., Damiani C., Ulissi U., Mancini M. V., et al. . (2015). Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasit. Vectors 8, 278. 10.1186/s13071-015-0888-0 PubMed DOI PMC
RStudio Team (2015). RStudio: Integrated Development for R. Boston, MA: RStudio, Inc.
Sardelis M. R., Turell M. J., Dohm D. J., O'Guinn M. L. (2001). Vector competence of selected North American Culex and Coquilletidia mosquitoes for West Nile virus. Emer. Infect. Dis. 7, 1018–1022. 10.3201/eid0706.010617 PubMed DOI PMC
Sinkins S. P. (2013). Wolbachia and arbovirus inhibition in mosquitoes. Future Microbiol. 8, 1249–1256. 10.2217/fmb.13.95 PubMed DOI
Stalinski R., Tetreau G., Gaude T., Després L. (2014). Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistanceto the Bti toxins cocktail. J. Invertebr. Pathol. 119, 50–53. 10.1016/j.jip.2014.04.002 PubMed DOI
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Sunish I. P., Rajendran R., Paramasivan R., Dhananjeyan K. J., Tyagi B. K. (2011). Wolbachia endobacteria in a natural population of Culex quinquefasciatus from filariasis endemic villages of south India and its phylogenetic implication. Trop. Biomed. 28, 569–576. PubMed
Tchioffo M. T., Boissière A., Abate L., Nsango S. E., Bayibéki A. N., Awono-Ambéné P. H., et al. . (2016). Dynamics of bacterial community composition in the malaria mosquito's epithelia. Front. Microbiol. 6:1500. 10.3389/fmicb.2015.01500 PubMed DOI PMC
Van Treuren W., Ponnusamy L., Brinkerhoff R. J., Gonzalez A., Parobek C. M., Juliano J. J., et al. . (2015). Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl. Environ. Microbiol. 81, 6200–6209. 10.1128/AEM.01562-15 PubMed DOI PMC
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC
Weiss S. J., Xu Z., Amir A., Peddada S., Bittinger K., Gonzalez A., et al. (2015). Effects of library size variance, sparsity, and compositionality on the analysis of microbiome data. PeerJ PrePrints 3:e1408 10.7287/peerj.preprints.1157v1 DOI
Werren J. H., Baldo L., Clark M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751. 10.1038/nrmicro1969 PubMed DOI
Wickham H. (2009). Ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag; Available online at: http://ggplot2.org 10.1007/978-0-387-98141-3 DOI
Wiwatanaratanabutr I., Kittayapong P. (2009). Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus. J. Invertebr. Pathol. 102, 220–224. 10.1016/j.jip.2009.08.009 PubMed DOI
Yadav K. K., Bora A., Datta S., Chandel K., Gogoi H. K., Prasad G. B., et al. . (2015). Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasit. Vectors 8:641. 10.1186/s13071-015-1252-0 PubMed DOI PMC
Ye Y. H., Carrasco A. M., Dong Y., Sgrò C. M., McGraw E. A. (2016). The effect of temperature on Wolbachia-mediated Dengue virus blocking in Aedes aegypti. Am. J. Trop. Med. Hyg. 94, 812–819. 10.4269/ajtmh.15-0801 PubMed DOI PMC
Zélé F., Nicot A., Berthomieu A., Weill M., Duron O,., Rivero A. (2014). Wolbachia increases susceptibility to Plasmodium infection in a natural system. Proc. R. Soc. B 281, 20132837. 10.1098/rspb.2013.2837 PubMed DOI PMC
Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts
Methodological Insight Into Mosquito Microbiome Studies
Metacommunity theory for transmission of heritable symbionts within insect communities
Microbiomes of North American Triatominae: The Grounds for Chagas Disease Epidemiology