• This record comes from PubMed

Ambient and substrate energy influence decomposer diversity differentially across trophic levels

. 2023 Jul ; 26 (7) : 1157-1173. [epub] 20230508

Language English Country Great Britain, England Media print-electronic

Document type Letter

Grant support
Bauer-und Stemmler Stiftung
22-27166S Czech Science Foundation
20016/466 Deutsche Bundesstiftung Umwelt
TH 2218/5-1 Deutsche Forschungsgemeinschaft

The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy.

Am Greifenkeller 1b Feuchtwangen Germany

Arma dei Carabinieri CUFA Projects Conventions Environmental Education Office Rome Italy

Bavarian Environment Agency Biodiversitätszentrum Rhön Bischofsheim in der Rhön Germany

Bavarian Forest National Park Grafenau Germany

Berchtesgaden National Park Berchtesgaden Germany

Chair of Ecophysiology and Vegetation Ecology University of Würzburg Würzburg Germany

Chair of Forest Botany Institute of Forest Botany and Forest Zoology Technical University of Dresden Tharandt Germany

CNPF CRPF Occitanie Auzeville Tolosane France

Czech Academy of Sciences Biology Centre Institute of Entomology České Budějovice Czech Republic

Departamento de Ecología Universidad de Granada Granada Spain

Department for Forest Nature Conservation Georg August University Göttingen Göttingen Germany

Department for Life Science Systems TUM School of Life Sciences Technical University Munich Freising Germany

Department for Soil Ecology University of Bayreuth Bayreuth Germany

Department of Biogeochemical Processes Max Planck Institute for Biogeochemistry Jena Germany

Department of Biology Indiana University Indiana Bloomington USA

Department of Bioscience and Territory Università degli Studi del Molise Pesche Italy

Department of Environmental Systems Science Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland

Department of Epidemiology and Biostatistics School of Public Health Biostatistics Consulting Center Indiana University Indiana Bloomington USA

Department of Forest Growth Silviculture and Genetics Federal Research and Training Centre for Forests Natural Hazards and Landscape BFW Vienna Austria

Department of Plant Ecology and Ecosystems Research Georg August University Göttingen Göttingen Germany

Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden

Ecological Botanical Garden of the University of Bayreuth Bayreuth Germany

Ecosystem Dynamics and Forest Management Research Group Technical University of Munich Freising Germany

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences NMBU Ås Norway

Field Station Fabrikschleichach Department of Animal Ecology and Tropical Biology Julius Maximilians University Würzburg Rauhenebrach Germany

Forest Nature Conservation Northwest German Forest Research Institute Hann Münden Germany

French National Research Institute for Agriculture Food and Environment INRAE 'Forest Ecosystems' Research Unit Nogent sur Vernisson France

Hessian Agency for Nature Conservation Environment and Geology Biodiversity Center Gießen Germany

Institute for Applied Science University of Applied Forest Sciences Rottenburg Rottenburg Germany

Institute of Ecology and Evolution IEE Conservation Biology University of Bern Bern Switzerland

Juistweg 1 Münster Germany

Julius Kühn Institute Federal Research Centre for Cultivated Plants Institute for Forest Protection Quedlinburg Germany

Laboratory of Environmental Microbiology Institute of Microbiology of the Czech Academy of Sciences Praha 4 Czech Republic

NBFC National Biodiversity Future Center Palermo Italy

Reparto Carabinieri Biodiversità di Verona Centro Nazionale Carabinieri Biodiversità Bosco Fontana Marmirolo Italy

School of Agricultural Forest and Food Sciences HAFL Bern University of Applied Sciences BFH Zollikofen Switzerland

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

Technische Universität Dresden Forest Zoology Tharandt Germany

University of Toulouse Engineering School of Purpan UMR 1201 INRAE INPT DYNAFOR Toulouse France

University of Toulouse INRAE UMR 1201 DYNAFOR Castanet Tolosan France

See more in PubMed

Archibald, S.B., Bossert, W.H., Greenwood, D.R. & Farrell, B.D. (2010) Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36, 374-398.

Arita, L.H., Furutani, S.C., Fukada, M.T. & Nakayama, T.R. (1993) Feeding response of the Chinese rose beetle (Coleoptera: Scarabaeidae) to nonstructural carbohydrates in plants. Journal of Economic Entomology, 86, 1416-1419.

BayFORKLIM. (1996) Klimaatlas von Bayern. München: Bayrischer Klimaforschungsbund, c/o Metereologisches Institut der Universität München.

Benbow, M.E., Barton, P.S., Ulyshen, M.D., Beasley, J.C., DeVault, T.L., Strickland, M.S. et al. (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecological Monographs, 89, 1-29.

Bouget, C., Brin, A. & Brustel, H. (2011) Exploring the “last biotic frontier”: are temperate forest canopies special for saproxylic beetles? Forest Ecology and Management, 261, 211-220.

Brin, A., Bouget, C., Brustel, H. & Jactel, H. (2011) Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests. Journal of Insect Conservation, 15, 653-669.

Chang, J. & Root, B. (1975) On the relationship between mean monthly global radiation and air temperature. Archiv Für Meteorologie, Geophysik und Bioklimatologie: Series B, 23, 13-30.

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. et al. (2014) Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45-67.

Chase, J.M. & Knight, T.M. (2013) Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecology Letters, 16, 17-26.

Chave, J., Muller-Landau, H.C., Baker, T.R., Easdale, T.A., ter Steege, H. & Webb, C.O. (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16, 2356-2367.

Clarke, A. & Gaston, K.J. (2006) Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences, 273, 2257-2266.

Cocciufa, C., Gerth, W., Luiselli, L., De Zan, L.R., Cerretti, P. & Carpaneto, G.M. (2014) Survey of saproxylic beetle assemblages at different forest plots in Central Italy. Bulletin of Insectology, 67, 295-306.

Cox, P., Wilkinson, S.P. & Anderson, J.M. (2001) Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biology and Fertility of Soils, 33, 246-251.

Currie, D. (1991) The University of Chicago Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.

Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.F., Hawkins, B.A. et al. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134.

David, J.F. (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biology and Biochemistry, 76, 109-118.

Durka, W. & Michalski, S.G. (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology, 93, 2297.

EEA. (2018) Corine Land Cover. Eur. Union, Copernicus L. Monit. Serv. Available from: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 [Accessed 5th April 2020].

Errouissi, F., Haloti, S., Jay-Robert, P., Janati-Idrissi, A. & Lumaret, J.P. (2004) Effects of the attractiveness for dung beetles of dung pat origin and size along a climatic gradient. Environmental Entomology, 33, 45-53.

Evans, K.L., Warren, P.H. & Gaston, K.J. (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews, 80, 1-25.

Farwig, N., Brandl, R., Siemann, S., Wiener, F. & Müller, J. (2014) Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia, 175, 1291-1300.

Feldhaar, H. & Schauer, B. (2018) Dispersal of Saproxylic insects. In: Ulyshen, M.D. (Ed.) Saproxylic insects diversity, ecology and conservation. Berlin, Heidelberg: Springer, pp. 515-546.

Felsenstein, J. (1985) Phylogenies and the comparative method. The American Naturalist, 125, 16-15.

Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.

Filipiak, M. (2018) Nutrient dynamics in decomposing dead Wood in the context of Wood eater requirements: the ecological stoichiometry of Saproxylophagous insects. In: Ulyshen, M.D. (Ed.) Saproxylic insect diversity, ecology and conservation. Berlin Heidelberg: Springer, pp. 429-469.

Filipiak, M. & Weiner, J. (2014) How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory. PLoS ONE, 9, 1-20.

Frank, K., Brückner, A., Hilpert, A., Heethoff, M. & Blüthgen, N. (2017) Nutrient quality of vertebrate dung as a diet for dung beetles. Scientific Reports, 7, 1-12.

Frank, K., Hülsmann, M., Assmann, T., Schmitt, T. & Blüthgen, N. (2017) Land use affects dung beetle communities and their ecosystem service in forests and grasslands. Agriculture, Ecosystems and Environment, 243, 114-122.

Frank, K., Krell, F.T., Slade, E.M., Raine, E.H., Chiew, L.Y., Schmitt, T. et al. (2018) Global dung webs: high trophic generalism of dung beetles along the latitudinal diversity gradient. Ecology Letters, 21, 1229-1236.

Gaston, K.J. (2000) Global patterns in biodiversity. Nature, 405, 220-227.

Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H. et al. (2010) Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372-380.

Gibb, H., Hjältén, J., Ball, J.P., Atlegrim, O., Pettersson, R.B., Hilszczański, J. et al. (2006) Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages. Ecography (Cop.)., 29, 191-204.

Gillooly, J.F., Allen, A.P. & Allen, P. (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88, 1890-1894.

Gittings, T. & Giller, P.S. (1998) Resource quality and the colonisation and succession of coprophagous dung beetles. Ecography (Cop.)., 21, 581-592.

Gossner, M.M., Wende, B., Levick, S., Schall, P., Floren, A., Linsenmair, K.E. et al. (2016) Deadwood enrichment in European forests-which tree species should be used to promote saproxylic beetle diversity? Biological Conservation, 201, 92-102.

Gotelli, N.J. & Colwell, R.K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379-391.

Götmark, F., Åsegård, E. & Franc, N. (2011) How we improved a landscape study of species richness of beetles in woodland key habitats, and how model output can be improved. Forest Ecology and Management, 262, 2297-2305.

Groffman, P.M., Rustad, L.E., Templer, P.H., Campbell, J.L., Christenson, L.M., Lany, N.K. et al. (2012) Long-term integrated studies show complex and surprising effects of climate change in the northern hardwood forest. BioScience, 62, 1056-1066.

Haeler, E., Bergamini, A., Blaser, S., Ginzler, C., Hindenlang, K., Keller, C. et al. (2021) Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landscape Ecology, 36, 89-104.

Hagge, J., Abrego, N., Bässler, C., Bouget, C., Brin, A., Brustel, H. et al. (2019) Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. Journal of Biogeography, 46, 1054-1065.

Hagge, J., Leibl, F., Müller, J., Plechinger, M., Soutinho, J.G. & Thorn, S. (2019) Reconciling pest control, nature conservation, and recreation in coniferous forests. Conservation Letters, 12, e12615.

Halme, P., Vartija, N., Salmela, J., Penttinen, J. & Norros, V. (2013) High within- and between-trunk variation in the nematoceran (Diptera) community and its physical environment in decaying aspen trunks. Insect Conserv. Divers., 6, 502-512.

Hammond, H.E.J., Langor, D.W. & Spence, J.R. (2004) Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Canadian Journal of Forest Research, 34, 1-19.

Hardersen, S., Macagno, A.L.M., Chiari, S., Audisio, P., Gasparini, P., Lo Giudice, G. et al. (2020) Forest management, canopy cover and geographical distance affect saproxylic beetle communities of small-diameter beech deadwood. Forest Ecology and Management, 467, 118152.

Harris, J.E., Rodenhouse, N.L. & Holmes, R.T. (2019) Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biological Conservation, 240, 108219.

Hättenschwiler, S. & Jørgensen, H.B. (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 98, 754-763.

Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufman, D.M. et al. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.

Hedin, J., Isacsson, G., Jonsell, M. & Komonen, A. (2008) Forest fuel piles as ecological traps for saproxylic beetles in oak. Scandinavian Journal of Forest Research, 23, 348-357.

Hijmans, R.J., van Etten, J., Sumner, M., Cheng, J., Baston, D., Bevan, A. et al. (2022) raster: geographic data analysis and modeling. R package version 3.5-15. R Packag. version 3.5-15, 1-249.

Hjältén, J., Stenbacka, F., Pettersson, R.B., Gibb, H., Johansson, T., Danell, K. et al. (2012) Micro and macro-habitat associations in saproxylic beetles: implications for biodiversity management. PLoS ONE, 7, e41100.

Hollister, J., Shah, T., Robitaille, A., Beck, M. & Johnson, M. (2021) Elevatr: access elevation data from various APIs. R package version 0.4.2.

Hsieh, T.C., Ma, K.H. & Chao, A. (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.

Hulme, M.A. & Shields, J.K. (1970) Biological control of decay fungi in wood by competition for non-structural carbohydrates. Nature, 227, 300-301.

Hunt, J.H. & Amdam, G.V. (2005) Bivoltinism as an antecedent to Eusociality in the paper wasp genus Polistes. Science, 308, 264-267.

Hyvönen, R., Olsson, B.A., Lundkvist, H. & Staaf, H. (2000) Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. Forest Ecology and Management, 126, 97-112.

Jonsson, B.G., Kruys, N. & Ranius, T. (2005) Ecology of species living on dead wood-lessons for dead wood management. Silva Fennica, 39, 289-309.

Klopfer, P.H. & MacArthur, R.H. (1960) Niche size and faunal diversity. The American Naturalist, XCIV, 293-300.

Komonen, A. & Müller, J. (2018) Dispersal ecology of deadwood organisms and connectivity conservation. Conservation Biology, 32, 535-545.

Kotowska, M.M., Wright, I.J. & Westoby, M. (2020) Parenchyma abundance in wood of Evergreen trees varies independently of nutrients. Frontiers in Plant Science, 11, 1-15.

Lassauce, A., Lieutier, F. & Bouget, C. (2012) Woodfuel harvesting and biodiversity conservation in temperate forests: effects of logging residue characteristics on saproxylic beetle assemblages. Biological Conservation, 147, 204-212.

Lettenmaier, L., Seibold, S., Bässler, C., Brandl, R., Gruppe, A., Müller, J. et al. (2022) Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia, 198, 825-834.

Linacre, E.T. (1969) Empirical relationships involving the global radiation intensity and ambient temperature at various latitudes and altitudes. Archiv Für Meteorologie, Geophysik und Bioklimatologie: Series B, 17, 1-20.

Lindman, L., Öckinger, E. & Ranius, T. (2022) Microclimatic conditions mediate the effect of deadwood and forest characteristics on a threatened beetle species, Tragosoma depsarium. Oecologia, 199, 737-752.

Lobo, J.M., Hortal, J. & Cabrero-Sañudo, F.J. (2006) Regional and local influence of grazing activity on the diversity of a semi-arid dung beetle community. Diversity and Distributions, 12, 111-123.

Lynch, M. (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution (N. Y)., 45, 1065-1080.

Macagno, A.L.M., Hardersen, S., Nardi, G., Lo Giudice, G. & Mason, F. (2015) Measuring saproxylic beetle diversity in small and medium diameter dead wood: the “grab-and-go” method. European Journal of Entomology, 112, 510-519.

MacArthur, R.H. (1984) Geographical ecology: patterns in the distribution of species. Princeton: Princeton University Press.

Meerts, P. (2002) Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science, 59, 713-722.

Moll, J., Kellner, H., Leonhardt, S., Stengel, E., Dahl, A., Bässler, C. et al. (2018) Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environmental Microbiology, 20, 3744-3756.

Müller, J., Brustel, H., Brin, A., Bussler, H., Bouget, C., Obermaier, E. et al. (2015) Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography (Cop.)., 38, 499-509.

Müller, J., Bußler, H. & Kneib, T. (2008) Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. Journal of Insect Conservation, 12, 107-124.

Muller-Landau, H.C. (2004) Interspecific and inter-site variation in Wood specific gravity of tropical trees. Biotropica, 36, 20-32.

Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. & Toxopeus, A.G. (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography (Cop.)., 37, 191-203.

Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S. & Favila, M.E. (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141, 1461-1474.

Nieto, A. & Alexander, K.N.A. (2010) European red list of Saproxylic beetles. Luxembourg: Publications Office of the European Union.

Norris, A.L. & Kunz, T.H. (2012) Effects of solar radiation on animal thermoregulation. In: Babatunde, E.B. (Ed.) Solar radiation. Rijeka: InTech, pp. 195-220,

Parisi, F., Frate, L., Lombardi, F., Tognetti, R., Campanaro, A., Biscaccianti, A.B. et al. (2020) Diversity patterns of Coleoptera and saproxylic communities in unmanaged forests of Mediterranean mountains. Ecological Indicators, 110, 105873.

Pechal, J.L., Benbow, M.E., Crippen, T.L., Tarone, A.M. & Tomberlin, J.K. (2014) Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere, 5, 1-21.

R Core Team. (2020) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.r-project.org/ [Accessed 16th November 2020].

Rajala, T., Peltoniemi, M., Hantula, J., Mäkipää, R. & Pennanen, T. (2011) RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fungal Ecology, 4, 437-448.

Ranius, T. & Fahrig, L. (2006) Targets for maintenance of dead wood for biodiversity conservation based on extinction thresholds. Scandinavian Journal of Forest Research, 21, 201-208.

Ranius, T., Hämäläinen, A., Sjögren, J., Hiron, M., Jonason, D., Kubart, A. et al. (2019) The evolutionary species pool concept does not explain occurrence patterns of dead-wood-dependent organisms: implications for logging residue extraction. Oecologia, 191, 241-252.

Riley, R., Salamov, A.A., Brown, D.W., Nagy, L.G., Floudas, D., Held, B.W. et al. (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States of America, 111, 9923-9928.

Saint-Germain, M., Drapeau, P. & Buddle, C.M. (2007) Host-use patterns of saproxylic phloeophagous and xylophagous Coleoptera adults and larvae along the decay gradient in standing dead black spruce and aspen. Ecography (Cop.)., 30, 737-748.

Seger, J. (1983) Partial bivoltinism may cause altering sex-ratio biases that favour eusociality. Nature, 301, 59-62.

Seibold, S., Bässler, C., Baldrian, P., Reinhard, L., Thorn, S., Ulyshen, M.D. et al. (2016) Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biological Conservation, 204, 181-188.

Seibold, S., Bässler, C., Brandl, R., Büche, B., Szallies, A., Thorn, S. et al. (2016) Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. Journal of Applied Ecology, 53, 934-943.

Seibold, S., Bässler, C., Brandl, R., Fahrig, L., Förster, B., Heurich, M. et al. (2017) An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology, 98, 1613-1622.

Seibold, S., Müller, J., Baldrian, P., Cadotte, M.W., Štursová, M., Biedermann, P.H.W. et al. (2019) Fungi associated with beetles dispersing from dead wood - Let's take the beetle bus! Fungal Ecology, 39, 100-108.

Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M.D., Lorz, J. et al. (2021) The contribution of insects to global forest deadwood decomposition. Nature, 597, 77-81.

Seibold, S. & Thorn, S. (2018) The importance of dead-wood amount for Saproxylic insects and how it interacts with dead-wood diversity and other habitat factors. In: Ulyshen, M.D. (Ed.) Saproxylic insects-diversity, ecology and conservation. Berlin Heidelberg: Springer, pp. 607-637.

Siitonen, J. (2001) Forest management, coarse Woody debris and Saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins, 49, 11-41.

Singh, T. & Kostecky, M.M. (1986) Calorific value variations in components of 10 Canadian tree species. Canadian Journal of Forest Research, 16, 1378-1381.

Six, D.L. & Elser, J.J. (2019) Extreme ecological stoichiometry of a bark beetle-fungus mutualism. Ecological Entomology, 44, 543-551.

Storch, D., Bohdalková, E. & Okie, J. (2018) The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity-diversity relationship. Ecology Letters, 21, 920-937.

Sverdrup-Thygeson, A., Bendiksen, E., Birkemoe, T. & Larsson, K.H. (2014) Do conservation measures in forest work? A comparison of three area-based conservation tools for wood-living species in boreal forests. Forest Ecology and Management, 330, 8-16.

Sverdrup-Thygeson, A., Gustafsson, L. & Kouki, J. (2014) Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodiversity and Conservation, 23, 513-535.

Thiele, H.-U. (1977) Carabid beetles in their environments-a study on habitat selection by adaptations in physiology and behaviour. Berlin Heidelberg: Springer-Verlag.

Thorn, S., Bässler, C., Bußler, H., Lindenmayer, D.B., Schmidt, S., Seibold, S. et al. (2016) Bark-scratching of storm-felled trees preserves biodiversity at lower economic costs compared to debarking. Forest Ecology and Management, 364, 10-16.

Thorn, S., Bußler, H., Fritze, M.A., Goeder, P., Müller, J., Weiß, I. et al. (2016) Canopy closure determines arthropod assemblages in microhabitats created by windstorms and salvage logging. Forest Ecology and Management, 381, 188-195.

Turner, J.R.G. (2004) Explaining the global biodiversity gradient: energy, area, history and natural selection. Basic and Applied Ecology, 5, 435-448.

Turner, J.R.G., Gatehouse, C.M. & Corey, C.A. (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos, 48, 195-205.

Turner, K.L., Abernethy, E.F., Conner, L.M., Rhodes, O.E. & Beasley, J.C. (2017) Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology, 98, 2413-2424.

Ulyshen, M.D. (2016) Wood decomposition as influenced by invertebrates. Biological Reviews, 91, 70-85.

Ulyshen, M.D. (2018) Saproxylic insects diversity, ecology and conservation. Zoological monographs. Berlin Heidelberg: Springer.

Van Der Wal, A., Ottosson, E. & De Boer, W. (2015) Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology, 96, 124-133.

VanLaerhoven, S.L., Benbow, M.E., Tomberlin, J.K. & Tarone, A.M. (2015) Modeling species interactions with carrion food webs. In: Benbow, M.E., Tomberlin, J.K. & Tarone, A.M. (Eds.) Carrion ecology, evolution, and their applications. Boca Raton: CRC, pp. 231-245.

Větrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B.D. et al. (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 10, 5142.

Vogel, S., Bussler, H., Finnberg, S., Müller, J., Stengel, E. & Thorn, S. (2020) Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches. Insect Conservation and Diversity, 14, 132-143.

Vogel, S., Gossner, M.M., Mergner, U., Müller, J. & Thorn, S. (2020) Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: an experimental approach. Journal of Applied Ecology, 57, 2075-2085.

Vogel, S., Prinzing, A., Bußler, H., Müller, J., Schmidt, S. & Thorn, S. (2021) Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood. Ecology and Evolution, 11, 6881-6888.

von Hoermann, C., Jauch, D., Kubotsch, C., Reichel-Jung, K., Steiger, S. & Ayasse, M. (2018) Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles (Coleoptera: Silphidae): a large scale carrion study. PLoS ONE, 13, e0196839.

von Hoermann, C., Lackner, T., Sommer, D., Heurich, M., Benbow, M.E. & Müller, J. (2021) Carcasses at fixed locations host a higher diversity of necrophilous beetles. Insects, 12, 1-18.

von Hoermann, C., Weithmann, S., Deißler, M., Ayasse, M. & Steiger, S. (2020) Forest habitat parameters influence abundance and diversity of cadaver-visiting dung beetles in Central Europe. Royal Society Open Science, 7, 191722.

Vos, V.C.A., van Ruijven, J., Berg, M.P., Peeters, E.T.H.M. & Berendse, F. (2013) Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia, 173, 269-280.

Waide, R.B., Willig, M.R., Steiner, C.F., Mittelbach, G., Gough, L., Dodson, S.I. et al. (1999) The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257-300.

Weedon, J.T., Cornwell, W.K., Cornelissen, J.H.C., Zanne, A.E., Wirth, C. & Coomes, D.A. (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters, 12, 45-56.

Whittaker, R.J., Willis, K.J. & Field, F. (2003) Climatic- energetic explanations of diversity: a macroscopic perspective. In: Blackburn, T.M. & Gaston, K.J. (Eds.) Macroecology: concepts and consequences. Oxford: Blackwell Science, pp. 107-129.

Wood, S.N., Pya, N. & Säfken, B. (2016) Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association, 111, 1548-1563.

Wright, D.H. (1983) Species-energy theory : an extension of species-area theory. Oikos, 41, 496-506.

Yamamura, K. & Kiritani, K. (1998) A simple method to estimate the potential increase in the number of generations under global warming in tmeperate zones. Applied Entomology and Zoology, 33, 289-298.

Yang, S., Poorter, L., Kuramae, E.E., Sass-Klaassen, U., Leite, M.F.A., Costa, O.Y.A. et al. (2022) Stem traits, compartments and tree species affect fungal communities on decaying wood. Environmental Microbiology, 24, 1-15.

Ziemińska, K., Butler, D.W., Gleason, S.M., Wright, I.J. & Westoby, M. (2013) Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants, 5, 1-14.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...