Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides

. 2023 Apr 30 ; 72 (2) : 149-166.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159850

The expansion of industry and the use of pesticides in agriculture represent one of the major causes of environmental contamination. Unfortunately, individuals and animals are exposed to these foreign and often toxic substances on a daily basis. Therefore, it is crucial to monitor the impact of such chemicals on human health. Several in vitro studies have addressed this issue, but it is difficult to explore the impact of these compounds on living organisms. A nematode Caenorhabditis elegans has become a useful alternative to animal models mainly because of its transparent body, fast growth, short life cycle, and easy cultivation. Furthermore, at the molecular level, there are significant similarities between humans and C. elegans. These unique features make it an excellent model to complement mammalian models in toxicology research. Heavy metals and pesticides, which are considered environmental contaminants, are known to have affected the locomotion, feeding behavior, brood size, growth, life span, and cell death of C. elegans. Today, there are increasing numbers of research articles dedicated to this topic, of which we summarized the most recent findings dedicated to the effect of heavy metals, heavy metal mixtures, and pesticides on the well-characterized nervous system of this nematode.

Zobrazit více v PubMed

Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. doi: 10.1093/genetics/77.1.71. PubMed DOI PMC

Consortium TC elegans S. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science (80) 1998:282. doi: 10.1126/science.282.5396.2012. PubMed DOI

Boyd WA, Smith MV, Freedman JH. Caenorhabditis elegans as a model in developmental toxicology. Methods Mol Biol. 2012;889:15–24. doi: 10.1007/978-1-61779-867-2_3. PubMed DOI PMC

Tralau T, Riebeling C, Pirow R, Oelgeschläger M, Seiler A, Liebsch M, et al. Wind of change challenges toxicological regulators. Environ Health Perspect. 2012;120:1489–94. doi: 10.1289/ehp.1104782. PubMed DOI PMC

Hartung T. Toxicology for the twenty-first century. Nature. 2009;460:208–212. doi: 10.1038/460208a. PubMed DOI

Knight AW, Little S, Houck K, Dix D, Judson R, Richard A, et al. Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCastTM chemicals. Regul Toxicol Pharmacol. 2009;55:188–199. doi: 10.1016/j.yrtph.2009.07.004. PubMed DOI

Hunt PR. The C. elegans model in toxicity testing. J Appl Toxicol. 2017;37:50–59. doi: 10.1002/jat.3357. PubMed DOI PMC

Johnson TE. Advantages and disadvantages of Caenorhabditis elegans for aging research. Exp Gerontol. 2003;38:1329–1332. doi: 10.1016/j.exger.2003.10.020. PubMed DOI

Marsh EK, May RC. Caenorhabditis elegans, A model organism for investigating immunity. Appl Environ Microbiol. 2012;78:2075–81. doi: 10.1128/AEM.07486-11. PubMed DOI PMC

Ha NM, Tran SH, Shim YH, Kang K. Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Appl Biol Chem. 2022:65. doi: 10.1186/s13765-022-00685-y. DOI

Nichols ALA, Eichler T, Latham R, Zimmer M. A global brain state underlies C. Elegans sleep behavior. Science (80) 2017;356:1247–1256. doi: 10.1126/science.aam6851. PubMed DOI

Gjorgjieva J, Biron D, Haspel G. Neurobiology of Caenorhabditis elegans locomotion: Where do we stand? Bioscience. 2014;64:476–486. doi: 10.1093/biosci/biu058. PubMed DOI PMC

Byrd DT, Jin Y. Wired for insight- recent advance in C. elegans Neural Circuits. Curr Opin Neurobiol. 2022;69:159–169. doi: 10.1016/j.conb.2021.02.009. PubMed DOI PMC

Hobert O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook. 2010:1–24. doi: 10.1895/wormbook.1.12.2. PubMed DOI PMC

Iliff AJ, Xu XZS. C. elegans: a sensible model for sensory biology. J Neurogenet. 2020;34:347–350. doi: 10.1080/01677063.2020.1823386. PubMed DOI PMC

Emmons SW. The beginning of connectomics: A commentary on White et al(1986) 'The structure of the nervous system of the nematode Caenorhabditis elegans.'. Philos Trans R Soc B Biol Sci. 2015:370. doi: 10.1098/rstb.2014.0309. PubMed DOI PMC

Tolstenkov O, Van der Auwera P, Costa WS, Bazhanova O, Gemeinhardt TM, Bergs ACF, et al. Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. Elife. 2018;7:1–28. doi: 10.7554/eLife.34997. PubMed DOI PMC

Zhang C, Zhao N, Chen Y, Zhang D, Yan J, Zou W, et al. The signaling pathway of Caenorhabditis elegans mediates chemotaxis response to the attractant 2-heptanone in a Trojan Horse-like pathogenesis. J Biol Chem. 2016;291:23618–23627. doi: 10.1074/jbc.M116.741132. PubMed DOI PMC

Ruszkiewicz JA, Pinkas A, Miah MR, Weitz RL, Lawes MJA, Akinyemi AJ, et al. C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol. 2018;354:126–135. doi: 10.1016/j.taap.2018.03.016. PubMed DOI PMC

Tanner CM, Kame F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 2011;119:866–872. doi: 10.1289/ehp.1002839. PubMed DOI PMC

Raj K, Kaur P, Gupta GD, Singh S. Metals associated neurodegeneration in Parkinson's disease: Insight to physiological, pathological mechanisms and management. Neurosci Lett. 2021;753:135873. doi: 10.1016/j.neulet.2021.135873. PubMed DOI

Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, et al. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol Sci. 2008;106:5–28. doi: 10.1093/toxsci/kfn121. PubMed DOI PMC

Williams PL, Dusenbery DB. Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ Toxicol Chem. 1990;9:1285–1290. https://doi.org/10.1002/etc.5620091007, https://doi.org/10.1897/1552-8618(1990)9[1285:ATTUTN]2.0.CO;2. DOI

Ijomone OM, Miah MR, Akingbade GT, Bucinca H, Aschner M. Nickel-induced developmental neurotoxicity in C. elegans includes cholinergic, dopaminergic and GABAergic degeneration, altered behaviour, and increased SKN-1 activity. Neurotox Res. 2020;37:1018–1028. doi: 10.1007/s12640-020-00175-3. PubMed DOI

Tang B, Williams PL, Xue KS, Wang JS, Tang L. Detoxification mechanisms of nickel sulfate in nematode Caenorhabditis elegans. Chemosphere. 2020;260:127627. doi: 10.1016/j.chemosphere.2020.127627. PubMed DOI

Kong L, Gao X, Zhu J, Zhang T, Xue Y, Tang M. Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. Environ Toxicol. 2017;32:1530–1538. doi: 10.1002/tox.22373. PubMed DOI

Chen CY, Wang YF, Lin YH, Yen SF. Nickel-induced oxidative stress and effect of antioxidants in human lymphocytes. Arch Toxicol. 2003;77:123–130. doi: 10.1007/s00204-002-0427-6. PubMed DOI

M'Bemba-Meka P, Lemieux N, Chakrabarti SK. Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes. Arch Toxicol. 2007;81:89–99. doi: 10.1007/s00204-006-0128-7. PubMed DOI

M'Bemba-Meka P, Lemieux N, Chakrabarti SK. Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in nickel subsulfide-induced human lymphocyte death in vitro. Sci Total Environ. 2006;369:21–34. doi: 10.1016/j.scitotenv.2006.04.007. PubMed DOI

Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MMB, Bowman AB, et al. Manganese homeostasis in the nervous system. J Neurochem. 2015;134:601–610. doi: 10.1111/jnc.13170. PubMed DOI PMC

Settivari R, VanDuyn N, LeVora J, Nass R. The Nrf2/SKN-1-dependent glutathione S-transferase π homologue GST-1 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of manganism. Neurotoxicology. 2013;38:51–60. doi: 10.1016/j.neuro.2013.05.014. PubMed DOI PMC

Avila DS, Benedetto A, Au C, Bornhorst J, Aschner M. Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC Pharmacol Toxicol. BMC Pharmacol Toxicol. 2016;17:1–9. doi: 10.1186/s40360-016-0097-2. PubMed DOI PMC

Ijomone OM, Miah MR, Peres TV, Nwoha PU, Aschner M. Null allele mutants of trt-1, the catalytic subunit of telomerase in Caenorhabditis elegans, are less sensitive to Mn-induced toxicity and DAergic degeneration. Neurotoxicology. 2016;57:54–60. doi: 10.1016/j.neuro.2016.08.016. PubMed DOI

Lawes M, Pinkas A, Frohlich BA, Iroegbu JD, Ijomone OM, Aschner M. Metal-induced neurotoxicity in a RAGE-expressing C. elegans model. Neurotoxicology. 2020;80:71–75. doi: 10.1016/j.neuro.2020.06.013. PubMed DOI PMC

Raj V, Nair A, Thekkuveettil A. Manganese exposure during early larval stages of C. elegans causes learning disability in the adult stage. Biochem Biophys Res Commun. 2021;568:89–94. doi: 10.1016/j.bbrc.2021.06.073. PubMed DOI

Neumann C, Baesler J, Steffen G, Nicolai MM, Zubel T, Aschner M, et al. The role of poly(ADP-ribose) polymerases in manganese exposed Caenorhabditis elegans. J Trace Elem Med Biol. 2020;57:21–27. doi: 10.1016/j.jtemb.2019.09.001. PubMed DOI PMC

Guilarte TR. Manganese neurotoxicity: New perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci. 2013;5:1–10. doi: 10.3389/fnagi.2013.00023. PubMed DOI PMC

Racette BA, Tabbal SD, Jennings D, Good L, Perlmutter JS, Evanoff B. Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology. 2005;64:230–235. doi: 10.1212/01.WNL.0000149511.19487.44. PubMed DOI

Gonzalez-Cuyar LF, Nelson G, Criswell SR, Ho P, Lonzanida JA, Checkoway H, et al. Quantitative neuropathology associated with chronic manganese exposure in South African mine workers. Neurotoxicology. 2014;45:260–266. doi: 10.1016/j.neuro.2013.12.008. PubMed DOI PMC

Caito S, Aschner M. Neurotoxicity of metals. Handb. Clin. Neurol. Elsevier B.V. 1st ed. 2015. PubMed DOI

Crespo-López ME, Macêdo GL, Pereira SID, Arrifano GPF, Picanço-Diniz DLW, Nascimento JLMd, et al. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacol Res. 2009;60:212–220. doi: 10.1016/j.phrs.2009.02.011. PubMed DOI

Martins AC, Ke T, Bowman AB, Aschner M. New insights on mechanisms underlying methylmercury-induced and manganese-induced neurotoxicity. Curr Opin Toxicol. 2021;25:30–35. doi: 10.1016/j.cotox.2021.03.002. PubMed DOI PMC

Amadi CN, Igweze ZN, Orisakwe OE. Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertil Soc J. 2017;22:91–100. doi: 10.1016/j.mefs.2017.03.003. DOI

Antonelli MC, Pallarés ME, Ceccatelli S, Spulber S. Long-term consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Prog Neurobiol. 2017;155:21–35. doi: 10.1016/j.pneurobio.2016.05.005. PubMed DOI

Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol. 2009;56:732–741. doi: 10.1007/s00244-009-9307-x. PubMed DOI

McElwee MK, Freedman JH. Comparative toxicology of mercurials in Caenorhabditis elegans. Environ Toxicol Chem. 2011;30:2135–2141. doi: 10.1002/etc.603. PubMed DOI PMC

Ke T, Santamaria A, Rocha JBT, Tinkov A, Bornhorst J, Bowman AB, et al. Cephalic neuronal vesicle formation is developmentally dependent and modified by methylmercury and sti-1 in Caenorhabditis elegans. Neurochem Res. 2020;45:2939–2948. doi: 10.1007/s11064-020-03142-8. PubMed DOI

Wang Y, Zhao F, Liao Y, Jin Y, Sun G. Effects of arsenite in astrocytes on neuronal signaling transduction. Toxicology. 2013;303:43–53. doi: 10.1016/j.tox.2012.10.024. PubMed DOI

Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol. 2020;40:87–131. doi: 10.1002/jat.3823. PubMed DOI

Yu CW, Liao VHC. Arsenite induces neurotoxic effects on AFD neurons via oxidative stress in Caenorhabditis elegans. Metallomics. 2014;6:1824–1831. doi: 10.1039/C4MT00160E. PubMed DOI

Zhang X, Zhong HQ, Chu ZW, Zuo X, Wang L, Ren XL, et al. Arsenic induces transgenerational behavior disorders in Caenorhabditis elegans and its underlying mechanisms. Chemosphere. 2020;252:126510. doi: 10.1016/j.chemosphere.2020.126510. PubMed DOI

Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN. Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology. 2017;387:81–94. doi: 10.1016/j.tox.2017.05.018. PubMed DOI PMC

Müller L, Soares GC, Josende ME, Monserrat JM, Ventura-Lima J. Comparison of the toxic effects of organic and inorganic arsenic in Caenorhabditis elegans using a multigenerational approach. Toxicol Res (Camb) 2022;11:402–16. doi: 10.1093/toxres/tfac010. PubMed DOI PMC

Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, et al. Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res. 2001;85:69–76. doi: 10.1006/enrs.2000.4106. PubMed DOI

Kapaj S, Peterson H, Liber K, Bhattacharya P. Human health effects from chronic arsenic poisoning-a review. J Environ Sci Heal Part A. 2006;41:2399–2428. doi: 10.1080/10934520600873571. PubMed DOI

Tolins M, Ruchirawat M, Landrigan P. The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure. Ann Glob Heal. 2014;80:303–314. doi: 10.1016/j.aogh.2014.09.005. PubMed DOI

Bornhorst J, Ebert F, Meyer S, Ziemann V, Xiong C, Guttenberger N, et al. Toxicity of three types of arsenolipids: Species-specific effects in: Caenorhabditis elegans. Metallomics. 2020;12:794–798. doi: 10.1039/d0mt00039f. PubMed DOI

González De Chávez Capilla T. The metabolism of arsenic in humans: Bioaccessibility in the gastrointestinal tract, diffusion across lipid membranes and biotransformations in liver cells. University of Canberra; Australia: 2018. https://researchsystem.canberra.edu.au/ws/portalfiles/portal/33678845/file .

Müller SM, Finke H, Ebert F, Kopp JF, Schumacher F, Kleuser B, et al. Arsenic-containing hydrocarbons: Effects on gene expression, epigenetics, and biotransformation in HepG2 cells. Arch Toxicol. 2018;92:1751–1765. doi: 10.1007/s00204-018-2194-z. PubMed DOI

Meyer S, Matissek M, Müller SM, Taleshi MS, Ebert F, Francesconi KA, et al. In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics. 2014;6:1023–1033. doi: 10.1039/C4MT00061G. PubMed DOI

Mason LH, Harp JP, Han DY. Pb neurotoxicity: Neuropsychological effects of lead toxicity. Biomed Res. 2014:2014. doi: 10.1155/2014/840547. PubMed DOI PMC

Sanders T, Liu Y, Buchner V, Tchounwou PB. Neurotoxic effects and biomarkers of lead exposure: A review. Rev Environ Health. 2009;24:15–45. doi: 10.1515/REVEH.2009.24.1.15. PubMed DOI PMC

Ijomone OM, Gubert P, Okoh COA, Varão AM, de Amaral LO, Aluko OM, et al. Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in C. elegans. Neuromethods. 2021;172:399–426. doi: 10.1007/978-1-0716-1637-6_18. PubMed DOI PMC

Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, et al. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere. 2016;144:2392–2400. doi: 10.1016/j.chemosphere.2015.11.028. PubMed DOI

Akinyemi AJ, Miah MR, Ijomone OM, Tsatsakis A, Soares FAA, Tinkov AA, et al. Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter. Toxicol Reports. 2019;6:833–840. doi: 10.1016/j.toxrep.2019.08.001. PubMed DOI PMC

Tiwari SS, Tambo F, Agarwal R. Assessment of lead toxicity on locomotion and growth in a nematode Caenorhabditis elegans. J Appl Nat Sci. 2020;12:36–41. doi: 10.31018/jans.v12i1.2227. DOI

Bishak YK, Payahoo L, Osatdrahimi A, Nourazarian A. Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pacific J Cancer Prev. 2015;16:9–21. doi: 10.7314/APJCP.2015.16.1.9. PubMed DOI

Schoeters G, Den Hond E, Zuurbier M, Naginiene R, Van Den Hazel P, Stilianakis N, et al. Cadmium and children: Exposure and health effects. Acta Paediatr Int J Paediatr. 2006;95:50–54. doi: 10.1080/08035320600886232. PubMed DOI

Wang B, Du Y. Cadmium and its neurotoxic effects. Oxid Med Cell Longev. 2013:2013. doi: 10.1155/2013/898034. PubMed DOI PMC

Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci. 2013;5:1–11. doi: 10.3389/fnagi.2013.00018. PubMed DOI PMC

Zhu JQ, Liu Y, Zhang JH, Liu YF, Cao JQ, Huang ZT, et al. Cadmium exposure of female mice impairs the meiotic maturation of oocytes and subsequent embryonic development. Toxicol Sci. 2018;164:289–299. doi: 10.1093/toxsci/kfy089. PubMed DOI

Wang S, Chu Z, Zhang K, Miao G. Cadmium-induced serotonergic neuron and reproduction damages conferred lethality in the nematode Caenorhabditis elegans. Chemosphere. 2018;213:11–18. doi: 10.1016/j.chemosphere.2018.09.016. PubMed DOI

Qu Z, Guo P, Zheng S, Yu Z, Liu L, Zheng F, et al. Cadmium is detrimental to Caenorhabditis elegans via a network involving circRNA, lncRNA and phosphorylated. bioRxiv. 2022 doi: 10.1101/2022.04.16.486470. DOI

Höss S, Schlottmann K, Traunspurger W. Toxicity of ingested cadmium to the nematode Caenorhabditis elegans. Environ Sci Technol. 2011;45:10219–10225. doi: 10.1021/es2027136. PubMed DOI

Bovio F, Sciandrone B, Urani C, Fusi P, Forcella M, Regonesi ME. Superoxide dismutase 1 (SOD1) and cadmium: A three models approach to the comprehension of its neurotoxic effects. Neurotoxicology. 2021;84:125–135. doi: 10.1016/j.neuro.2021.03.007. PubMed DOI

González-Hunt CP, Leung MCK, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, et al. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One. 2014;9:1–23. doi: 10.1371/journal.pone.0114459. PubMed DOI PMC

Cedergreen N. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS One. 2014:9. doi: 10.1371/journal.pone.0096580. PubMed DOI PMC

Ajsuvakova OP, Tinkov AA, Willkommen D, Skalnaya AA, Danilov AB, Pilipovich AA, et al. Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson's disease: A pilot study. J Trace Elem Med Biol. 2020;59:126423. doi: 10.1016/j.jtemb.2019.126423. PubMed DOI

Schetinger MRC, Peres TV, Arantes LP, Carvalho F, Dressler V, Heidrich G, et al. Combined exposure to methylmercury and manganese during L1 larval stage causes motor dysfunction, cholinergic and monoaminergic up-regulation and oxidative stress in L4 Caenorhabditis elegans. Toxicology. 2019;411:154–162. doi: 10.1016/j.tox.2018.10.006. PubMed DOI PMC

Lu C, Svoboda KR, Lenz KA, Pattison C, Ma H. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans. Environ Sci Pollut Res. 2018;25:15378–15389. doi: 10.1007/s11356-018-1752-5. PubMed DOI

Wah Chu K, Chow KL. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol. 2002;61:53–64. doi: 10.1016/S0166-445X(02)00017-6. PubMed DOI

Chen P, DeWitt MR, Bornhorst J, Soares FA, Mukhopadhyay S, Bowman AB, et al. Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson's disease. Metallomics. 2015;7:289–298. doi: 10.1039/C4MT00292J. PubMed DOI PMC

Goutam Mukherjee A, Ramesh Wanjari U, Eladl MA, El-Sherbiny M, Elsherbini DMA, Sukumar A, et al. Mixed contaminants: occurrence, interactions, toxicity, detection, and remediation. Molecules. 2022;27:2577. doi: 10.3390/molecules27082577. PubMed DOI PMC

Moyson S, Town RM, Vissenberg K, Blust R. The effect of metal mixture composition on toxicity to C. Elegans at individual and population levels. PLoS One. 2018;14:1–23. doi: 10.1371/journal.pone.0218929. PubMed DOI PMC

Pei C, Sun L, Zhao Y, Ni S, Nie Y, Wu L, et al. Enhanced uptake of arsenic induces increased toxicity with cadmium at non-toxic concentrations on Caenorhabditis elegans. Toxics. 2022:10. doi: 10.3390/toxics10030133. PubMed DOI PMC

Meyer D, Williams PL. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. J Toxicol Environ Heal - Part B Crit Rev. 2014;17:284–306. doi: 10.1080/10937404.2014.933722. PubMed DOI

Rand JB, Nonet ML. In: C. elegans II. Chapter 22 Synaptic transmission. 2nd ed. Riddle DL, Blumenthal T, Meyer BJ, et al., editors. New York: Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997. PubMed

Clark DG, McElligott TF, Hurst EW. The Toxicity of Paraquat. Occup Environ Med. 1966;23:126–32. doi: 10.1136/oem.23.2.126. PubMed DOI PMC

Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A, Remião F, Bastos ML, Carvalho F. Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol. 2008;38:13–71. doi: 10.1080/10408440701669959. PubMed DOI

Barbeau A, Dallaire L, Buu NT, Poirier J, Rucinska E. Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in rana pipiens. Life Sci. 1985;37:1529–1538. doi: 10.1016/0024-3205(85)90185-7. PubMed DOI

Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H. Mechanistic investigations of the mitochondrial complex I inhibitor Rotenone in the context of pharmacological and safety evaluation. Sci Rep. 2017;7:1–13. doi: 10.1038/srep45465. PubMed DOI PMC

Chia SJ, Tan EK, Chao YX. Historical perspective: Models of Parkinson's disease. Int J Mol Sci. 2020;21:1–14. doi: 10.3390/ijms21072464. PubMed DOI PMC

Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008;4:600–609. doi: 10.1038/ncpneuro0924. PubMed DOI

Ritz BR, Manthripragada AD, Costello S, Lincoln SJ, Farrer MJ, Cockburn M, et al. Dopamine transporter genetic variants and pesticides in Parkinson's disease. Environ Health Perspect. 2009;117:964–969. doi: 10.1289/ehp.0800277. PubMed DOI PMC

Wu S, Lei L, Song Y, Liu M, Lu S, Lou D, et al. Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans: the role of mitochondria-associated membrane proteins in Parkinsonism. Exp Neurol. 2018;309:67–78. doi: 10.1016/j.expneurol.2018.07.018. PubMed DOI PMC

Zhou S, Wang Z, Klaunig JE. Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals. Int J Biochem Mol Biol. 2013;4:191–200. PubMed PMC

Mello DF, Bergemann CM, Fisher K, Chitrakar R, Bijwadia SR, Wang Y, et al. Rotenone modulates Caenorhabditis elegans immunometabolism and pathogen susceptibility. Front Immunol. 2022;13:1–14. doi: 10.3389/fimmu.2022.840272. PubMed DOI PMC

Bora S, Vardhan GSH, Deka N, Khataniar L, Gogoi D, Baruah A. Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. elegans. Toxicology. 2021;447:152632. doi: 10.1016/j.tox.2020.152632. PubMed DOI

Lu M, Mishra A, Boschetti C, Lin J, Liu Y, Huang H, et al. Sea cucumber-derived peptides alleviate oxidative stress in neuroblastoma cells and improve survival in c. elegans exposed to neurotoxic paraquat. Oxid Med Cell Longev. 2021;2021 doi: 10.1155/2021/8842926. PubMed DOI PMC

Ji P, Li H, Jin Y, Peng Y, Zhao L, Wang X. C. Elegans as an in vivo model system for the phenotypic drug discovery for treating paraquat poisoning. PeerJ. 2022;10:1–16. doi: 10.7717/peerj.12866. PubMed DOI PMC

Okoroiwu HU, Iwara IA. Dichlorvos toxicity: A public health perspective. Interdiscip Toxicol. 2018;11:129–137. doi: 10.2478/intox-2018-0009. PubMed DOI PMC

Stanley J, Sah K, Jain SK, Bhatt JC, Sushil SN. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere. 2015;119:668–674. doi: 10.1016/j.chemosphere.2014.07.039. PubMed DOI

Du L, Li S, Qi L, Hou Y, Zeng Y, Xu W, et al. Metabonomic analysis of the joint toxic action of long-term low-level exposure to a mixture of four organophosphate pesticides in rat plasma. Mol Biosyst. 2014;10:1153–1161. doi: 10.1039/C4MB00044G. PubMed DOI

Lewis JA, Gehman EA, Baer CE, Jackson DA. Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery. BMC Genomics. 2013;14:1. doi: 10.1186/1471-2164-14-291. PubMed DOI PMC

Wani WY, Gudup S, Sunkaria A, Bal A, Singh PP, Kandimalla RJL, et al. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain. Neuropharmacology. 2011;61:1193–201. doi: 10.1016/j.neuropharm.2011.07.008. PubMed DOI

Fiore M, Mattiuzzo M, Mancuso G, Totta P, Degrassi F. The pesticide dichlorvos disrupts mitotic division by delocalizing the kinesin Kif2a from centrosomes. Environ Mol Mutagen. 2013;54:250–260. doi: 10.1002/em.21769. PubMed DOI

Abou-Donia MB. Pesticides. In: Abou-Donia MB, editor. Neurotoxicology. Boca Raton, FL: CRC Press; 1995. pp. 437–478.

Patil VK, David M. Behavioral and morphological endpoints: As an early response to sublethal malathion intoxication in the freshwater fish, Labeo rohita. Drug Chem Toxicol. 2010;33:160–165. doi: 10.3109/01480540903196816. PubMed DOI

Williams PL, Dusenbery DB. A Promising Indicator of Neurobehavioral Toxicity Using the Nematode Caenorhabditis elegans and Computer Tracking. Toxicol Ind Health. 1990;6:425–440. doi: 10.1177/074823379000600306. PubMed DOI

Abdel-Rahman A, Dechkovskaia AM, Goldstein LB, Bullman SH, Khan W, El-Masry EM, et al. Neurological deficits induced by malathion, deet, and permethrin, alone or in combination in adult rats. J Toxicol Environ Heal - Part A. 2004;67:331–356. doi: 10.1080/15287390490273569. PubMed DOI

Kamaladevi A, Ganguli A, Balamurugan K. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans. Comp Biochem Physiol Part - C Toxicol Pharmacol. 2016;179:19–28. doi: 10.1016/j.cbpc.2015.08.004. PubMed DOI

Rajini PS, Melstrom P, Williams PL. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides. J Toxicol Environ Health - Part A Curr Issues. 2008;71:1043–1050. doi: 10.1080/15287390801989002. PubMed DOI

Leelaja BC, Rajini PS. Biochemical and physiological responses in Caenorhabditis elegans exposed to sublethal concentrations of the organophosphorus insecticide, monocrotophos. Ecotoxicol Environ Saf. 2013;94:8–13. doi: 10.1016/j.ecoenv.2013.04.015. PubMed DOI

Olivier K, Liu J, Karanth S, Zhang H, Roane DS, Pope CN. Parathion-Induced Neurotoxicity. J Toxicol Environ Health - Part A. 2001:253–271. doi: 10.1080/15287390151143659. PubMed DOI

Salim C, Rajini PS. Glucose feeding during development aggravates the toxicity of the organophosphorus insecticide Monocrotophos in the nematode, Caenorhabditis elegans. Physiol Behav. 2014;131:142–148. doi: 10.1016/j.physbeh.2014.04.022. PubMed DOI

Ali SJ, Rajini PS. Elicitation of Dopaminergic Features of Parkinson's Disease in C. elegans by Monocrotophos, an Organophosphorous Insecticide. CNS Neurol Disord - Drug Targets. 2013;11:993–1000. doi: 10.2174/1871527311211080008. PubMed DOI

Ali SJ, Rajini PS. Effect of monocrotophos, an organophosphorus insecticide, on the striatal dopaminergic system in a mouse model of Parkinson's disease. Toxicol Ind Health. 2016;32:1153–1165. doi: 10.1177/0748233714547733. PubMed DOI

Paz-Trejo C, Gómez-Arroyo S. Genotoxic evaluation of common commercial pesticides in human peripheral blood lymphocytes. Toxicol Ind Health. 2017;33:938–945. doi: 10.1177/0748233717736121. PubMed DOI

Stalikas CD, Konidari CN. Analytical methods to determine phosphonic and amino acid group-containing pesticides. J Chromatogr A. 2001;907:1–19. doi: 10.1016/S0021-9673(00)01009-8. PubMed DOI

Schmitt F, Babylon L, Dieter F, Eckert GP. Effects of pesticides on longevity and bioenergetics in invertebrates-The impact of polyphenolic metabolites. Int J Mol Sci. 2021:22. doi: 10.3390/ijms222413478. PubMed DOI PMC

Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, et al. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? Environ Pollut. 2020;263:114372. doi: 10.1016/j.envpol.2020.114372. PubMed DOI

Kronberg MF, Clavijo A, Moya A, Rossen A, Calvo D, Pagano E, et al. Glyphosate-based herbicides modulate oxidative stress response in the nematode Caenorhabditis elegans. Comp Biochem Physiol Part - C Toxicol Pharmacol. 2018;214:1–8. doi: 10.1016/j.cbpc.2018.08.002. PubMed DOI

Bailey DC, Todt CE, Burchfield SL, Pressley AS, Denney RD, Snapp IB, et al. Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Environ Toxicol Pharmacol. 2018;57:46–52. doi: 10.1016/j.etap.2017.11.005. PubMed DOI PMC

Burchfield SL, Bailey DC, Todt CE, Denney RD, Negga R, Fitsanakis VA. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environ Toxicol Pharmacol. 2019;66:36–42. doi: 10.1016/j.etap.2018.12.019. PubMed DOI PMC

Costas-Ferreira C, Durán R, Faro LRF. Toxic effects of glyphosate on the nervous system: a systematic review. Int J Mol Sci. 2022:23. doi: 10.3390/ijms23094605. PubMed DOI PMC

Fuhrimann S, van den Brenk I, Atuhaire A, Mubeezi R, Staudacher P, Huss A, et al. Recent pesticide exposure affects sleep: A cross-sectional study among smallholder farmers in Uganda. Environ Int. 2022;158:106878. doi: 10.1016/j.envint.2021.106878. PubMed DOI

Cocco P. Time for Re-Evaluating the Human Carcinogenicity of Ethylenedithiocarbamate Fungicides? A Systematic Review. Int J Environ Res Public Health. 2022:19. doi: 10.3390/ijerph19052632. PubMed DOI PMC

Ajiboye TO, Ajiboye TT, Marzouki R, Onwudiwe DC. The versatility in the applications of dithiocarbamates. Int J Mol Sci. 2022;23:1–36. doi: 10.3390/ijms23031317. PubMed DOI PMC

Hogarth G. Metal-dithiocarbamate complexes: chemistry and biological activity. Mini-Reviews Med Chem. 2012;12:1202–1215. doi: 10.2174/138955712802762095. PubMed DOI

Caito SW, Valentine WM, Aschner M. Dopaminergic neurotoxicity of S -ethyl N,N -dipropylthiocarbamate (EPTC), molinate, and S -methyl- N,N -diethylthiocarbamate (MeDETC) in Caenorhabditis elegans. J Neurochem. 2013;127:837–851. doi: 10.1111/jnc.12349. PubMed DOI PMC

Runkle J, Flocks J, Economos J, Dunlop AL. A systematic review of Mancozeb as a reproductive and developmental hazard. Environ Int. 2017;99:29–42. doi: 10.1016/j.envint.2016.11.006. PubMed DOI

Negga R, Rudd DA, Davis NS, Justice AN, Hatfield HE, Valente AL, et al. Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. Neurotoxicology. 2012;32:331–341. doi: 10.1016/j.neuro.2011.02.002. PubMed DOI PMC

Negga R, Stuart JA, Machen ML, Salva J, Lizek AJ, Richardson SJ, et al. Exposure to glyphosate-and/or Mn/Zn-ethylene-bis-dithiocarbamate-containing pesticides leads to degeneration of c-aminobutyric acid and dopamine neurons in Caenorhabditis elegans. Neurotox Res. 2012;21:281–290. doi: 10.1007/s12640-011-9274-7. PubMed DOI PMC

Nordby KC, Andersen A, Irgens LM, Kristensen P. Indicators of mancozeb exposure in relation to thyroid cancer and neural tube defects in farmers' families. Scand J Work Environ Heal. 2005;31:89–96. doi: 10.5271/sjweh.855. PubMed DOI

Bianchi S, Nottola SA, Torge D, Palmerini MG, Necozione S, Macchiarelli G. Association between female reproductive health and mancozeb: Systematic review of experimental models. Int J Environ Res Public Health. 2020:17. doi: 10.3390/ijerph17072580. PubMed DOI PMC

Román GC. Autism: Transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. J Neurol Sci. 2007;262:15–26. doi: 10.1016/j.jns.2007.06.023. PubMed DOI

Salim C, Rajini PS. Glucose-rich diet aggravates monocrotophos-induced dopaminergic neuronal dysfunction in Caenorhabditis elegans. J Appl Toxicol. 2017;37:772–80. doi: 10.1002/jat.3426. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...