A Review of the Literature on the Endocrine Disruptor Activity Testing of Bisphenols in Caenorhabditis elegans
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
6/TU/2024
Trnava University in Trnava
8/TU/2025
Trnava University in Trnava
013UCM-4/2025
Ministry of Education, Research, Development and Youth of the Slovak Republic
APVV-24-0093
The Slovak Research and Development Agency
PubMed
41562766
PubMed Central
PMC12821627
DOI
10.3390/jox16010007
PII: jox16010007
Knihovny.cz E-zdroje
- Klíčová slova
- Caenorhabditis elegans, EDC, alternative toxicity testing, bisphenols, endocrine disruptors, high-throughput screening, neurotoxicity, oxidative stress, reproductive toxicity, toxicity, toxicological endpoints,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Endocrine disruptors, including bisphenol A, S, AF, and F, have been demonstrated to exhibit endocrine-disrupting activity. This phenomenon has been associated with a variety of health problems, including (but not limited to) neurological and reproductive disorders. Given the potential hazards, it is essential to have effective tools to assess their toxicity. The nematode Caenorhabditis elegans has become a widely used model organism for studying bisphenols because of its genetic simplicity and the conservation of its fundamental biological processes. This review article summarizes current knowledge of bisphenol toxicity and the use of the model organism C. elegans as a high-throughput system for investigating the toxicological profiles of BPA and its emerging alternatives. Furthermore, we highlight the specific methodologies for assessing the toxic effects of bisphenols in C. elegans. While highlighting its advantages, we critically discuss its limitations, including the absence of specific metabolic organs, which constrain direct extrapolation to mammalian systems. Based on available evidence, we conclude that C. elegans serves as an essential bridge between in vitro assays and mammalian models, offering a powerful platform for the early hazard identification and mechanistic screening of bisphenol analogues.
Zobrazit více v PubMed
World Health Organization Global Assessment on the State of the Science of Endocrine Disruptors. [(accessed on 10 February 2025)]. Available online: https://iris.who.int/handle/10665/67357.
Yilmaz B., Terekeci H., Sandal S., Kelestimur F. Endocrine Disrupting Chemicals: Exposure, Effects on Human Health, Mechanism of Action, Models for Testing and Strategies for Prevention. Rev. Endocr. Metab. Disord. 2019;21:127–147. doi: 10.1007/s11154-019-09521-z. PubMed DOI
Ho V., Pelland-St-Pierre L., Gravel S., Bouchard M.F., Verner M.A., Labrèche F. Endocrine Disruptors: Challenges and Future Directions in Epidemiologic Research. Environ. Res. 2022;204:111969. doi: 10.1016/j.envres.2021.111969. PubMed DOI
Diamanti-Kandarakis E., Bourguignon J.P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC
Thomas Zoeller R., Brown T.R., Doan L.L., Gore A.C., Skakkebaek N.E., Soto A.M., Woodruff T.J., Vom Saal F.S. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society. Endocrinology. 2012;153:4097–4110. doi: 10.1210/en.2012-1422. PubMed DOI PMC
La Merrill M.A., Vandenberg L.N., Smith M.T., Goodson W., Browne P., Patisaul H.B., Guyton K.Z., Kortenkamp A., Cogliano V.J., Woodruff T.J., et al. Consensus on the Key Characteristics of Endocrine-Disrupting Chemicals as a Basis for Hazard Identification. Nat. Rev. Endocrinol. 2019;16:45–57. doi: 10.1038/s41574-019-0273-8. PubMed DOI PMC
Monisha R.S., Mani R.L., Sivaprakash B., Rajamohan N., Vo D.V.N. Remediation and Toxicity of Endocrine Disruptors: A Review. Environ. Chem. Lett. 2022;21:1117–1139. doi: 10.1007/s10311-022-01455-4. DOI
Hassan S., Thacharodi A., Priya A., Meenatchi R., Hegde T.A., R T., Nguyen H.T., Pugazhendhi A. Endocrine Disruptors: Unravelling the Link between Chemical Exposure and Women’s Reproductive Health. Environ. Res. 2024;241:117385. doi: 10.1016/j.envres.2023.117385. PubMed DOI
Thacharodi A., Hassan S., Acharya G., Vithlani A., Hoang Le Q., Pugazhendhi A. Endocrine Disrupting Chemicals and Their Effects on the Reproductive Health in Men. Environ. Res. 2023;236:116825. doi: 10.1016/j.envres.2023.116825. PubMed DOI
De Oliveira I.V.M., De Albuquerque F.M., De Jesus Fernandes A., Berti Zanella P., Alves Silva M. Prenatal Exposure to Bisphenol-A and Neurocognitive Changes in Children Aged 2 to 5 Years: A Systematic Review. Rev. Environ. Health. 2025;40:820–833. doi: 10.1515/reveh-2024-0161. PubMed DOI
Zhang J., Yuan M., Liu Y., Zhong X., Wu J., Chen W. Bisphenol A Exposure and Neurodevelopmental Disorders and Problems in Children under 12 Years of Age: A Systematic Review and Meta-Analysis. J. Hazard. Mater. 2025;490:137731. doi: 10.1016/j.jhazmat.2025.137731. PubMed DOI
McAllister E.J., Dhurandhar N.V., Keith S.W., Aronne L.J., Barger J., Baskin M., Benca R.M., Biggio J., Boggiano M.M., Eisenmann J.C., et al. Ten Putative Contributors to the Obesity Epidemic. Crit. Rev. Food Sci. Nutr. 2009;49:868–913. doi: 10.1080/10408390903372599. PubMed DOI PMC
Ahn C., Jeung E.B. Endocrine-Disrupting Chemicals and Disease Endpoints. Int. J. Mol. Sci. 2023;24:5342. doi: 10.3390/ijms24065342. PubMed DOI PMC
Tumu K., Vorst K., Curtzwiler G. Endocrine Modulating Chemicals in Food Packaging: A Review of Phthalates and Bisphenols. Compr. Rev. Food Sci. Food Saf. 2023;22:1337–1359. doi: 10.1111/1541-4337.13113. PubMed DOI
Luttrell W.E., Baird B.A. Bisphenol, A. J. Chem. Health Saf. 2014;21:22–24. doi: 10.1016/j.jchas.2014.07.011. DOI
Manzoor M.F., Tariq T., Fatima B., Sahar A., Tariq F., Munir S., Khan S., Nawaz Ranjha M.M.A., Sameen A., Zeng X.A., et al. An Insight into Bisphenol A, Food Exposure and Its Adverse Effects on Health: A Review. Front. Nutr. 2022;9:1047827. doi: 10.3389/fnut.2022.1047827. PubMed DOI PMC
Ma Y., Liu H., Wu J., Yuan L., Wang Y., Du X., Wang R., Marwa P.W., Petlulu P., Chen X., et al. The Adverse Health Effects of Bisphenol A and Related Toxicity Mechanisms. Environ. Res. 2019;176:108575. doi: 10.1016/j.envres.2019.108575. PubMed DOI
Liu J., Zhang L., Lu G., Jiang R., Yan Z., Li Y. Occurrence, Toxicity and Ecological Risk of Bisphenol A Analogues in Aquatic Environment—A Review. Ecotoxicol. Environ. Saf. 2021;208:111481. doi: 10.1016/j.ecoenv.2020.111481. PubMed DOI
Fathy Abdel-satar M., Elgazzar A., Alalfy M., Abdalrashed M., Abdalmageed A., Greash M., Hamed S., Ragab W.S., Moustafa Magdi M. Correlation Study of Urinary BPA in Women with PCOS. Egypt. J. Forensic Sci. Appl. Toxicol. 2023;22:145–155. doi: 10.21608/ejfsat.2023.152359.1263. DOI
Rochester J.R. Bisphenol A and Human Health: A Review of the Literature. Reprod. Toxicol. 2013;42:132–155. doi: 10.1016/j.reprotox.2013.08.008. PubMed DOI
Urbanetz L.A.M.L., Junior J.M.S., Maciel G.A.R., Simões R.d.S., Baracat M.C.P., Baracat E.C. Does Bisphenol A (BPA) Participates in the Pathogenesis of Polycystic Ovary Syndrome (PCOS)? Clinics. 2023;78:100310. doi: 10.1016/j.clinsp.2023.100310. PubMed DOI PMC
Simonelli A., Guadagni R., De Franciscis P., Colacurci N., Pieri M., Basilicata P., Pedata P., Lamberti M., Sannolo N., Miraglia N. Environmental and Occupational Exposure to Bisphenol A and Endometriosis: Urinary and Peritoneal Fluid Concentration Levels. Int. Arch. Occup. Environ. Health. 2017;90:49–61. doi: 10.1007/s00420-016-1171-1. PubMed DOI
Vitku J., Sosvorova L., Chlupacova T., Hampl R., Hill M., Sobotka V., Heracek J., Bicikova M., Starka L. Differences in Bisphenol A and Estrogen Levels in the Plasma and Seminal Plasma of Men with Different Degrees of Infertility. Physiol. Res. 2015;64:303–311. doi: 10.33549/physiolres.933090. PubMed DOI
Presunto M., Mariana M., Lorigo M., Cairrao E. The Effects of Bisphenol A on Human Male Infertility: A Review of Current Epidemiological Studies. Int. J. Mol. Sci. 2023;24:12417. doi: 10.3390/ijms241512417. PubMed DOI PMC
Braun J.M., Muckle G., Arbuckle T., Bouchard M.F., Fraser W.D., Ouellet E., Séguin J.R., Oulhote Y., Webster G.M., Lanphear B.P. Associations of Prenatal Urinary Bisphenol A Concentrations with Child Behaviors and Cognitive Abilities. Environ. Health Perspect. 2017;125:067008. doi: 10.1289/EHP984. PubMed DOI PMC
Welch C., Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int. J. Mol. Sci. 2022;23:2894. doi: 10.3390/ijms23052894. PubMed DOI PMC
Kim J.I., Lee Y.A., Shin C.H., Hong Y.C., Kim B.N., Lim Y.H. Association of Bisphenol A, Bisphenol F, and Bisphenol S with ADHD Symptoms in Children. Environ. Int. 2022;161:107093. doi: 10.1016/j.envint.2022.107093. PubMed DOI
Li C., Sang C., Zhang S., Zhang S., Gao H. Effects of Bisphenol A and Bisphenol Analogs on the Nervous System. Chin. Med. J. 2023;136:295–304. doi: 10.1097/CM9.0000000000002170. PubMed DOI PMC
Sonavane M., Gassman N.R. Bisphenol A Co-Exposure Effects: A Key Factor in Understanding BPA’s Complex Mechanism and Health Outcomes. Crit. Rev. Toxicol. 2019;49:371–386. doi: 10.1080/10408444.2019.1621263. PubMed DOI PMC
Mustieles V., Zhang Y., Yland J., Braun J.M., Williams P.L., Wylie B.J., Attaman J.A., Ford J.B., Azevedo A., Calafat A.M., et al. Maternal and Paternal Preconception Exposure to Phenols and Preterm Birth. Environ. Int. 2020;137:105523. doi: 10.1016/j.envint.2020.105523. PubMed DOI PMC
Vidal M.S., Menon R., Yu G.F.B., Amosco M.D. Actions of Bisphenol A on Different Feto-Maternal Compartments Contributing to Preterm Birth. Int. J. Mol. Sci. 2022;23:2411. doi: 10.3390/ijms23052411. PubMed DOI PMC
Bi J., Wang F., Wei Y., Zhang Y., Jia C., He J., Yao J., Zhang Z., Li Z., Li P., et al. Association of Serum Bisphenol A Levels with Incident Overweight and Obesity Risk and the Mediating Effect of Adiponectin. Chemosphere. 2022;308:136287. doi: 10.1016/j.chemosphere.2022.136287. PubMed DOI
Deodati A., Bottaro G., Germani D., Carli F., Tait S., Busani L., Della Latta V., Pala A.P., Maranghi F., Tassinari R., et al. Urinary Bisphenol A and Bis(2-Ethylhexyl) Phthalate Metabolite Concentrations in Children with Obesity: A Case-Control Study. Horm. Res. Paediatr. 2024;97:388–396. doi: 10.1159/000535305. PubMed DOI PMC
Malaisé Y., Lencina C., Cartier C., Olier M., Ménard S., Guzylack-Piriou L. Perinatal Oral Exposure to Low Doses of Bisphenol A, S or F Impairs Immune Functions at Intestinal and Systemic Levels in Female Offspring Mice. Environ. Health. 2020;19:93. doi: 10.1186/s12940-020-00614-w. PubMed DOI PMC
Hale A., Moldovan G.L. Novel Insights into the Role of Bisphenol A (BPA) in Genomic Instability. NAR Cancer. 2024;6:38. doi: 10.1093/narcan/zcae038. PubMed DOI PMC
Buoso E., Masi M., Limosani R.V., Oliviero C., Saeed S., Iulini M., Passoni F.C., Racchi M., Corsini E. Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu. J. Xenobiotics. 2025;15:13. doi: 10.3390/jox15010013. PubMed DOI PMC
Chen D., Kannan K., Tan H., Zheng Z., Feng Y.L., Wu Y., Widelka M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016;50:5438–5453. doi: 10.1021/acs.est.5b05387. PubMed DOI
Food E., Authority S., Fitzgerald R., Loveren V., Civitella C., Castoldi A.F., Bernasconi G. Assessment of New Information on Bisphenol S (BPS) Submitted in Response to the Decision 1 under REACH Regulation (EC) No 1907/2006. EFSA Support. Publ. 2020;17:1844E. doi: 10.2903/sp.efsa.2020.en-1844. DOI
Maćczak A., Cyrkler M., Bukowska B., Michałowicz J. Bisphenol A, Bisphenol S, Bisphenol F and Bisphenol AF Induce Different Oxidative Stress and Damage in Human Red Blood Cells (in Vitro Study) Toxicol. Vitr. 2017;41:143–149. doi: 10.1016/j.tiv.2017.02.018. PubMed DOI
Ijaz S., Ullah A., Shaheen G., Jahan S. Exposure of BPA and Its Alternatives like BPB, BPF, and BPS Impair Subsequent Reproductive Potentials in Adult Female Sprague Dawley Rats. Toxicol. Mech. Methods. 2020;30:60–72. doi: 10.1080/15376516.2019.1652873. PubMed DOI
Eladak S., Grisin T., Moison D., Guerquin M.J., N’Tumba-Byn T., Pozzi-Gaudin S., Benachi A., Livera G., Rouiller-Fabre V., Habert R. A New Chapter in the Bisphenol A Story: Bisphenol S and Bisphenol F Are Not Safe Alternatives to This Compound. Fertil. Steril. 2015;103:11–21. doi: 10.1016/j.fertnstert.2014.11.005. PubMed DOI
Xu J., Huang G., Guo T.L. Bisphenol S Modulates Type 1 Diabetes Development in Non-Obese Diabetic (NOD) Mice with Diet- and Sex-Related Effects. Toxics. 2019;7:35. doi: 10.3390/toxics7020035. PubMed DOI PMC
Hu J., Zhao H., Braun J.M., Zheng T., Zhang B., Xia W., Zhang W., Li J., Zhou Y., Li H., et al. Associations of Trimester-Specific Exposure to Bisphenols with Size at Birth: A Chinese Prenatal Cohort Study. Environ. Health Perspect. 2019;127 doi: 10.1289/EHP4664. PubMed DOI PMC
Kim S., Park E., Park E.K., Lee S., Kwon J.A., Shin B.H., Kang S., Park E.Y., Kim B. Urinary Concentrations of Bisphenol Mixtures during Pregnancy and Birth Outcomes: The MAKE Study. Int. J. Environ. Res. Public. Health. 2021;18:10098. doi: 10.3390/ijerph181910098. PubMed DOI PMC
Liang F., Huo X., Wang W., Li Y., Zhang J., Feng Y., Wang Y. Association of Bisphenol A or Bisphenol S Exposure with Oxidative Stress and Immune Disturbance among Unexplained Recurrent Spontaneous Abortion Women. Chemosphere. 2020;257:127035. doi: 10.1016/j.chemosphere.2020.127035. PubMed DOI
Jiang Y., Li J., Xu S., Zhou Y., Zhao H., Li Y., Xiong C., Sun X., Liu H., Liu W., et al. Prenatal Exposure to Bisphenol A and Its Alternatives and Child Neurodevelopment at 2 Years. J. Hazard. Mater. 2020;388:121774. doi: 10.1016/j.jhazmat.2019.121774. PubMed DOI
George V.C., Rupasinghe H.P.V. DNA Damaging and Apoptotic Potentials of Bisphenol A and Bisphenol S in Human Bronchial Epithelial Cells. Environ. Toxicol. Pharmacol. 2018;60:52–57. doi: 10.1016/j.etap.2018.04.009. PubMed DOI
Chen H., Li J., Zhang Y., Zhang W., Li X., Tang H., Liu Y., Li T., He H., Du B., et al. Bisphenol F Suppresses Insulin-Stimulated Glucose Metabolism in Adipocytes by Inhibiting IRS-1/PI3K/AKT Pathway. Ecotoxicol. Environ. Saf. 2022;231:113201. doi: 10.1016/j.ecoenv.2022.113201. PubMed DOI
Wang Y.X., Liu C., Shen Y., Wang Q., Pan A., Yang P., Chen Y.J., Deng Y.L., Lu Q., Cheng L.M., et al. Urinary Levels of Bisphenol A, F and S and Markers of Oxidative Stress among Healthy Adult Men: Variability and Association Analysis. Environ. Int. 2019;123:301–309. doi: 10.1016/j.envint.2018.11.071. PubMed DOI
Usman A., Ikhlas S., Ahmad M. Occurrence, Toxicity and Endocrine Disrupting Potential of Bisphenol-B and Bisphenol-F: A Mini-Review. Toxicol. Lett. 2019;312:222–227. doi: 10.1016/j.toxlet.2019.05.018. PubMed DOI
Jin H., Xie J., Mao L., Zhao M., Bai X., Wen J., Shen T., Wu P. Bisphenol Analogue Concentrations in Human Breast Milk and Their Associations with Postnatal Infant Growth. Environ. Pollut. 2020;259:113779. doi: 10.1016/j.envpol.2019.113779. PubMed DOI
Lee S., An K.S., Kim H.J., Noh H.J., Lee J.W., Lee J., Song K.S., Chae C., Ryu H.Y. Pharmacokinetics and Toxicity Evaluation Following Oral Exposure to Bisphenol F. Arch. Toxicol. 2022;96:1711–1728. doi: 10.1007/s00204-022-03246-w. PubMed DOI PMC
Odetayo A.F., Adeyemi W.J., Olayaki L.A. Omega-3 Fatty Acid Ameliorates Bisphenol F-Induced Testicular Toxicity by Modulating Nrf2/NFkB Pathway and Apoptotic Signaling. Front. Endocrinol. 2023;14:1256154. doi: 10.3389/fendo.2023.1256154. PubMed DOI PMC
Odetayo A.F., Adeyemi W.J., Olayaki L.A. In Vivo Exposure to Bisphenol F Induces Oxidative Testicular Toxicity: Role of Erβ and P53/Bcl-2 Signaling Pathway. Front. Reprod. Health. 2023;5:1204728. doi: 10.3389/frph.2023.1204728. PubMed DOI PMC
Ding Z.M., Chen Y.W., Ahmad M.J., Wang Y.S., Yang S.J., Duan Z.Q., Liu M., Yang C.X., Liang A.X., Hua G.H., et al. Bisphenol F Exposure Affects Mouse Oocyte In Vitro Maturation through Inducing Oxidative Stress and DNA Damage. Environ. Toxicol. 2022;37:1413–1422. doi: 10.1002/tox.23494. PubMed DOI
Algonaiman R., Almutairi A.S., Al Zhrani M.M., Barakat H., Algonaiman R., Almutairi A.S., Al Zhrani M.M., Barakat H. Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring’s Health: Evidence from Epidemiological and Experimental Studies. Biomolecules. 2023;13:1616. doi: 10.3390/biom13111616. PubMed DOI PMC
Mu X., Liu J., Wang H., Yuan L., Wang C., Li Y., Qiu J. Bisphenol F Impaired Zebrafish Cognitive Ability through Inducing Neural Cell Heterogeneous Responses. Environ. Sci. Technol. 2022;56:8528–8540. doi: 10.1021/acs.est.2c01531. PubMed DOI
Dou L., Sun S., Chen L., Lv L., Chen C., Huang Z., Zhang A., He H., Tao H., Yu M., et al. The Association between Prenatal Bisphenol F Exposure and Infant Neurodevelopment: The Mediating Role of Placental Estradiol. Ecotoxicol. Environ. Saf. 2024;271:116009. doi: 10.1016/j.ecoenv.2024.116009. PubMed DOI
Gu J., Wu J., Xu S., Zhang L., Fan D., Shi L., Wang J., Ji G. Bisphenol F Exposure Impairs Neurodevelopment in Zebrafish Larvae (Danio Rerio) Ecotoxicol. Environ. Saf. 2020;188:109870. doi: 10.1016/j.ecoenv.2019.109870. PubMed DOI
Reina-Pérez I., Olivas-Martínez A., Mustieles V., Ruiz-Ojeda F.J., Molina-Molina J.M., Olea N., Fernández M.F. Bisphenol F and Bisphenol S Promote Lipid Accumulation and Adipogenesis in Human Adipose-Derived Stem Cells. Food Chem. Toxicol. 2021;152:112216. doi: 10.1016/j.fct.2021.112216. PubMed DOI
Wagner V.A., Clark K.C., Carrillo-Sáenz L., Holl K.A., Velez-Bermudez M., Simonsen D., Grobe J.L., Wang K., Thurman A., Solberg Woods L.C., et al. Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity. Toxicol. Sci. 2021;181:246. doi: 10.1093/toxsci/kfab035. PubMed DOI PMC
Jacobson M.H., Woodward M., Bao W., Liu B., Trasande L. Urinary Bisphenols and Obesity Prevalence Among U.S. Children and Adolescents. J. Endocr. Soc. 2019;3:1715–1726. doi: 10.1210/js.2019-00201. PubMed DOI PMC
Rancière F., Botton J., Slama R., Lacroix M.Z., Debrauwer L., Charles M.A., Roussel R., Balkau B., Magliano D.J., Balkau B., et al. Exposure to Bisphenol A and Bisphenol s and Incident Type 2 Diabetes: A Case-Cohort Study in the French Cohort D.E.S.I.R. Environ. Health Perspect. 2019;127:107013. doi: 10.1289/EHP5159. PubMed DOI PMC
Yuan L., Qian L., Qian Y., Liu J., Yang K., Huang Y., Wang C., Li Y., Mu X. Bisphenol F-Induced Neurotoxicity toward Zebrafish Embryos. Environ. Sci. Technol. 2019;53:14638–14648. doi: 10.1021/acs.est.9b04097. PubMed DOI
Wang H., Qi S., Mu X., Yuan L., Li Y., Qiu J. Bisphenol F Induces Liver-Gut Alteration in Zebrafish. Sci. Total Environ. 2022;851:157974. doi: 10.1016/j.scitotenv.2022.157974. PubMed DOI
Lu Y., Chen S., Jin H., Tang L., Xia M. Associations of Bisphenol F and S, as Substitutes for Bisphenol A, with Cardiovascular Disease in American Adults. J. Appl. Toxicol. 2023;43:500–507. doi: 10.1002/jat.4401. PubMed DOI
García-Recio E., Costela-Ruiz V.J., Illescas-Montes R., Melguizo-Rodríguez L., García-Martínez O., Ruiz C., De Luna-Bertos E. Modulation of Osteogenic Gene Expression by Human Osteoblasts Cultured in the Presence of Bisphenols BPF, BPS, or BPAF. Int. J. Mol. Sci. 2023;24:4256. doi: 10.3390/ijms24054256. PubMed DOI PMC
Catenza C.J., Farooq A., Shubear N.S., Donkor K.K. A Targeted Review on Fate, Occurrence, Risk and Health Implications of Bisphenol Analogues. Chemosphere. 2021;268:129273. doi: 10.1016/j.chemosphere.2020.129273. PubMed DOI
Escrivá L., Zilliacus J., Hessel E., Beronius A. Assessment of the Endocrine Disrupting Properties of Bisphenol AF: A Case Study Applying the European Regulatory Criteria and Guidance. Environ. Health. 2021;20:48. doi: 10.1186/s12940-021-00731-0. PubMed DOI PMC
Lu S., Liu M., Liu H., Yang C., Zhu J., Ling Y., Kuang H. Gestational Exposure to Bisphenol AF Causes Endocrine Disorder of Corpus Luteum by Altering Ovarian SIRT-1/Nrf2/NF-KB Expressions and Macrophage Proangiogenic Function in Mice. Biochem. Pharmacol. 2024;220:115954. doi: 10.1016/j.bcp.2023.115954. PubMed DOI
Zhan W., Tang W., Shen X., Xu H., Zhang J. Exposure to Bisphenol A and Its Analogs and Polycystic Ovarian Syndrome in Women of Childbearing Age: A Multicenter Case-Control Study. Chemosphere. 2023;313:137463. doi: 10.1016/j.chemosphere.2022.137463. PubMed DOI
Yue H., Yang X., Wu X., Tian Y., Xu P., Sang N. Identification of Risk for Ovarian Disease Enhanced by BPB or BPAF Exposure. Environ. Pollut. 2023;319:120980. doi: 10.1016/j.envpol.2022.120980. PubMed DOI
Wu X., Yang X., Tian Y., Xu P., Yue H., Sang N. Bisphenol B and Bisphenol AF Exposure Enhances Uterine Diseases Risks in Mouse. Environ. Int. 2023;173:107858. doi: 10.1016/j.envint.2023.107858. PubMed DOI
Meng X., Su S., Wei X., Wang S., Guo T., Li J., Song H., Wang M., Wang Z. Exposure to Bisphenol A Alternatives Bisphenol AF and Fluorene-9-Bisphenol Induces Gonadal Injuries in Male Zebrafish. Ecotoxicol. Environ. Saf. 2023;253:114634. doi: 10.1016/j.ecoenv.2023.114634. PubMed DOI
Xue S., Liu L., Dong M., Xue W., Zhou S., Li X., Guo S., Yan W. Prenatal Exposure to Bisphenol AF Induced Male Offspring Reproductive Dysfunction by Triggering Testicular Innate and Adaptive Immune Responses. Ecotoxicol. Environ. Saf. 2023;259:115030. doi: 10.1016/j.ecoenv.2023.115030. PubMed DOI
Wang L., Zhu Y., Gu J., Yin X., Guo L., Qian L., Shi L., Guo M., Ji G. The Toxic Effect of Bisphenol AF and Nanoplastic Coexposure in Parental and Offspring Generation Zebrafish. Ecotoxicol. Environ. Saf. 2023;251:114565. doi: 10.1016/j.ecoenv.2023.114565. PubMed DOI
Wu X., Li S., Ni Y., Qi C., Bai S., Xu Q., Fan Y., Ma X., Lu C., Du G., et al. Maternal BPAF Exposure Impaired Synaptic Development and Caused Behavior Abnormality in Offspring. Ecotoxicol. Environ. Saf. 2023;256:114859. doi: 10.1016/j.ecoenv.2023.114859. PubMed DOI
Yang Q., Liu J., Ding J., Liu J. Neurodevelopmental Toxicity of Bisphenol AF in Zebrafish Larvae and the Protective Effects of Curcumin. J. Appl. Toxicol. 2023;43:1806–1818. doi: 10.1002/jat.4514. PubMed DOI
Chernis N., Masschelin P., Cox A.R., Hartig S.M. Bisphenol AF Promotes Inflammation in Human White Adipocytes. Am. J. Physiol. Cell Physiol. 2020;318:C63–C72. doi: 10.1152/ajpcell.00175.2019. PubMed DOI PMC
Chen M., Lv C., Zhang S., Tse L.A., Hong X., Liu X., Ding Y., Xiao P., Tian Y., Gao Y. Bisphenol A Substitutes and Childhood Obesity at 7 Years: A Cross-Sectional Study in Shandong, China. Environ. Sci. Pollut. Res. 2023;30:73174–73184. doi: 10.1007/s11356-023-27578-x. PubMed DOI
Cui M., Tzioufa F., Bruton J., Westerblad H., Munic Kos V. The Impact of Bisphenol AF on Skeletal Muscle Function and Differentiation in Vitro. Toxicology. 2025;103:105975. doi: 10.1016/j.tiv.2024.105975. PubMed DOI
Gyimah E., Zhu X., Zhang Z., Guo M., Xu H., Mensah J.K., Dong X., Zhang Z., Gyimah G.N.W. Oxidative Stress and Apoptosis in Bisphenol AF–Induced Neurotoxicity in Zebrafish Embryos. Environ. Toxicol. Chem. 2022;41:2273–2284. doi: 10.1002/etc.5412. PubMed DOI
Hunt P.R. The C. elegans Model in Toxicity Testing. J. Appl. Toxicol. 2017;37:50–59. doi: 10.1002/jat.3357. PubMed DOI PMC
Hartung T. Toxicology for the Twenty-First Century. Nature. 2009;460:208–212. doi: 10.1038/460208a. PubMed DOI
Hunt P.R., Camacho J.A., Sprando R.L. Caenorhabditis elegans for Predictive Toxicology. Curr. Opin. Toxicol. 2020;23–24:23–28. doi: 10.1016/j.cotox.2020.02.004. DOI
Poh W.T., Stanslas J. The New Paradigm in Animal Testing—“3Rs Alternatives”. Regul. Toxicol. Pharmacol. 2024;153:105705. doi: 10.1016/j.yrtph.2024.105705. PubMed DOI
Ha N.M., Tran S.H., Shim Y.H., Kang K. Caenorhabditis elegans as a Powerful Tool in Natural Product Bioactivity Research. Appl. Biol. Chem. 2022;65:18. doi: 10.1186/s13765-022-00685-y. DOI
Wang Y., Ezemaduka A.N., Tang Y., Chang Z. Understanding the Mechanism of the Dormant Dauer Formation of C. elegans: From Genetics to Biochemistry. IUBMB Life. 2009;61:607–612. doi: 10.1002/iub.211. PubMed DOI
Mata-Cabana A., Romero-Expósito F.J., Geibel M., Piubeli F.A., Merrow M., Olmedo M. Deviations from Temporal Scaling Support a Stage-Specific Regulation for C. elegans Postembryonic Development. BMC Biol. 2022;20:1–15. doi: 10.1186/s12915-022-01295-2. PubMed DOI PMC
Muschiol D., Schroeder F., Traunspurger W. Life Cycle and Population Growth Rate of Caenorhabditis elegans Studied by a New Method. BMC Ecol. 2009;9:14. doi: 10.1186/1472-6785-9-14. PubMed DOI PMC
Indong R.A., Park J.M., Hong J.K., Lyou E.S., Han T., Hong J.K., Lee T.K., Lee J.I. A Simple Protocol for Cultivating the Bacterivorous Soil Nematode Caenorhabditis elegans in Its Natural Ecology in the Laboratory. Front. Microbiol. 2024;15:1347797. doi: 10.3389/fmicb.2024.1347797. PubMed DOI PMC
C. elegans Sequencing Consortium Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology. Science. 1998;282:2012–2018. doi: 10.1126/science.282.5396.2012. PubMed DOI
Leung M.C.K., Williams P.L., Benedetto A., Au C., Helmcke K.J., Aschner M., Meyer J.N. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci. 2008;106:5–28. doi: 10.1093/toxsci/kfn121. PubMed DOI PMC
Baumeister R., Ge L. The Worm in Us—Caenorhabditis elegans as a Model of Human Disease. Trends Biotechnol. 2002;20:147–148. doi: 10.1016/S0167-7799(01)01925-4. PubMed DOI
Williams D.C., Bailey D.C., Fitsanakis V.A. Reproductive and Developmental Toxicology. Academic Press; Cambridge, MA, USA: 2017. Caenorhabditis elegans as a Model to Assess Reproductive and Developmental Toxicity; pp. 303–314. DOI
Li Y., Zhong L., Zhang L., Shen X., Kong L., Wu T. Research Advances on the Adverse Effects of Nanomaterials in a Model Organism, Caenorhabditis elegans. Environ. Toxicol. Chem. 2021;40:2406–2424. doi: 10.1002/etc.5133. PubMed DOI
Melnikov K., Kucharíková S., Bárdyová Z., Botek N., Kaiglová A. Applications of a Powerful Model Organism Caenorhabditis elegans to Study the Neurotoxicity Induced by Heavy Metals and Pesticides. Physiol. Res. 2023;72:149–166. doi: 10.33549/physiolres.934977. PubMed DOI PMC
Istiban M.N., De Fruyt N., Kenis S., Beets I. Evolutionary Conserved Peptide and Glycoprotein Hormone-like Neuroendocrine Systems in C. elegans. Mol. Cell Endocrinol. 2024;584:112162. doi: 10.1016/j.mce.2024.112162. PubMed DOI PMC
Fielenbach N., Antebi A. C. elegans Dauer Formation and the Molecular Basis of Plasticity. Genes. Dev. 2008;22:2149–2165. doi: 10.1101/gad.1701508. PubMed DOI PMC
Mishra S., Dabaja M., Akhlaq A., Pereira B., Marbach K., Rovcanin M., Chandra R., Caballero A., Fernandes de Abreu D., Ch’ng Q.L., et al. Specific Sensory Neurons and Insulin-like Peptides Modulate Food Type-Dependent Oogenesis and Fertilization in Caenorhabditis elegans. Elife. 2023;12:e83224. doi: 10.7554/eLife.83224. PubMed DOI PMC
Zečić A., Braeckman B.P. DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells. 2020;9:109. doi: 10.3390/cells9010109. PubMed DOI PMC
Gerisch B., Rottiers V., Li D., Motola D.L., Cummins C.L., Lehrach H., Mangelsdorf D.J., Antebi A. A Bile Acid-like Steroid Modulates Caenorhabditis elegans Lifespan through Nuclear Receptor Signaling. Proc. Natl. Acad. Sci. USA. 2007;104:5014–5019. doi: 10.1073/pnas.0700847104. PubMed DOI PMC
Queirós L., Pereira J.L., Gonçalves F.J.M., Pacheco M., Aschner M., Pereira P. Caenorhabditis elegans as a Tool for Environmental Risk Assessment: Emerging and Promising Applications for a “Nobelized Worm”. Crit. Rev. Toxicol. 2019;49:411–429. doi: 10.1080/10408444.2019.1626801. PubMed DOI PMC
Long N.P., Kang J.S., Kim H.M. Caenorhabditis elegans: A Model Organism in the Toxicity Assessment of Environmental Pollutants. Environ. Sci. Pollut. Res. 2023;30:39273–39287. doi: 10.1007/s11356-023-25675-5. PubMed DOI
Yu Y., Chen H., Hua X., Wang C., Dong C., Xie D., Tan S., Xiang M., Li H. A Review of the Reproductive Toxicity of Environmental Contaminants in Caenorhabditis elegans. Hyg. Environ. Health Adv. 2022;3:100007. doi: 10.1016/j.heha.2022.100007. DOI
Li Y., Gao S., Jing H., Qi L., Ning J., Tan Z., Yang K., Zhao C., Ma L., Li G. Correlation of Chemical Acute Toxicity between the Nematode and the Rodent. Toxicol. Res. 2013;2:403–412. doi: 10.1039/c3tx50039j. DOI
Zhuang Z., Zhao Y., Wu Q., Li M., Liu H., Sun L., Gao W., Wang D. Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism. PLoS ONE. 2014;9:e85482. doi: 10.1371/journal.pone.0085482. PubMed DOI PMC
Amrit F.R.G., Ratnappan R., Keith S.A., Ghazi A. The C. elegans Lifespan Assay Toolkit. Methods. 2014;68:465–475. doi: 10.1016/j.ymeth.2014.04.002. PubMed DOI
Ficociello G., Gerardi V., Uccelletti D., Setini A. Molecular and Cellular Responses to Short Exposure to Bisphenols A, F, and S and Eluates of Microplastics in C. elegans. Environ. Sci. Pollut. Res. 2021;28:805–818. doi: 10.1007/s11356-020-10498-5. PubMed DOI
García-Espiñeira M.C., Tejeda-Benítez L.P., Olivero-Verbel J. Toxic Effects of Bisphenol A, Propyl Paraben, and Triclosan on Caenorhabditis elegans. Int. J. Environ. Res. Public Health. 2018;15:684. doi: 10.3390/ijerph15040684. PubMed DOI PMC
Hornos Carneiro M.F., Shin N., Karthikraj R., Barbosa F., Kannan K., Colaiácovo M.P. Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline. Genetics. 2020;214:381–395. doi: 10.1534/genetics.119.302939. PubMed DOI PMC
Zhou D., Yang J., Li H., Cui C., Yu Y., Liu Y., Lin K. The Chronic Toxicity of Bisphenol A to Caenorhabditis elegans after Long-Term Exposure at Environmentally Relevant Concentrations. Chemosphere. 2016;154:546–551. doi: 10.1016/j.chemosphere.2016.04.011. PubMed DOI
Hamamba N., Jie L., Wei Z.X., Qin Z.C., SARPONG F., Hua Z.X., HAMAMBA N., Jie L., Wei Z.X., Qin Z.C., et al. Effects of Treatment with Different Combinations of Bisphenol Compounds on the Mortality of Caenorhabditis elegans. Biomed. Environ. Sci. 2020;33:145–149. doi: 10.3967/BES2020.020. PubMed DOI
Wang D. Target Organ Toxicology in Caenorhabditis elegans. Springer; Singapore: 2019. Avoidance Behavior of Nematodes to Environmental Toxicants or Stresses; pp. 27–69. DOI
Wang M., Nie Y., Liu Y., Dai H., Wang J., Si B., Yang Z., Cheng L., Liu Y., Chen S., et al. Transgenerational Effects of Diesel Particulate Matter on Caenorhabditis elegans through Maternal and Multigenerational Exposure. Ecotoxicol. Environ. Saf. 2019;170:635–643. doi: 10.1016/j.ecoenv.2018.12.027. PubMed DOI
De la Parra-Guerra A., Olivero-Verbel J. Toxicity of Nonylphenol and Nonylphenol Ethoxylate on Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2020;187:109709. doi: 10.1016/j.ecoenv.2019.109709. PubMed DOI
Xiao X., Zhang X., Zhang C., Li J., Zhao Y., Zhu Y., Zhang J., Zhou X. Toxicity and Multigenerational Effects of Bisphenol S Exposure to Caenorhabditis elegans on Developmental, Biochemical, Reproductive and Oxidative Stress. Toxicol. Res. 2019;8:630–640. doi: 10.1039/c9tx00055k. PubMed DOI PMC
Hyun M., Rathor L., Kim H.J., McElroy T., Hwang K.H., Wohlgemuth S., Curry S., Xiao R., Leeuwenburgh C., Heo J.D., et al. Comparative Toxicities of BPA, BPS, BPF, and TMBPF in the Nematode Caenorhabditis elegans and Mammalian Fibroblast Cells. Toxicology. 2021;461:152924. doi: 10.1016/j.tox.2021.152924. PubMed DOI
Kucharíková S., Hockicková P., Melnikov K., Bárdyová Z., Kaiglová A. The Caenorhabditis elegans Cuticle Plays an Important Role against Toxicity to Bisphenol A and Bisphenol S. Toxicol. Rep. 2023;10:341–347. doi: 10.1016/j.toxrep.2023.02.013. PubMed DOI PMC
Kaiglová A., Bárdyová Z., Hockicková P., Zvolenská A., Melnikov K., Kucharíková S. Caenorhabditis elegans as a Model to Assess the Potential Risk to Human Health Associated with the Use of Bisphenol A and Its Substitutes. Int. J. Mol. Sci. 2025;26:2013. doi: 10.3390/ijms26052013. PubMed DOI PMC
Liu F., Zhang Y., Zhang M., Luo Q., Cao X., Cui C., Lin K., Huang K. Toxicological Assessment and Underlying Mechanisms of Tetrabromobisphenol A Exposure on the Soil Nematode Caenorhabditis elegans. Chemosphere. 2020;242:125078. doi: 10.1016/j.chemosphere.2019.125078. PubMed DOI
Wang D., Wang Y., Shen L. Confirmation of Combinational Effects of Calcium with Other Metals in a Paper Recycling Mill Effluent on Nematode Lifespan with Toxicity Identification Evaluation Method. J. Environ. Sci. 2010;22:731–737. doi: 10.1016/S1001-0742(09)60170-4. PubMed DOI
Scharf A., Pohl F., Egan B.M., Kocsisova Z., Kornfeld K. Reproductive Aging in Caenorhabditis elegans: From Molecules to Ecology. Front. Cell Dev. Biol. 2021;9:718522. doi: 10.3389/fcell.2021.718522. PubMed DOI PMC
Corsi A.K., Golden A., Conway S.J., Camacho J.A., Welch B., Sprando R.L., Hunt P.R. Reproductive-Toxicity-Related Endpoints in C. elegans Are Consistent with Reduced Concern for Dimethylarsinic Acid Exposure Relative to Inorganic Arsenic. J. Dev. Biol. 2023;11:18. doi: 10.3390/jdb11020018. PubMed DOI PMC
Wang M., Chen Y., Kickhoefer V.A., Rome L.H., Allard P., Mahendra S. A Vault-Encapsulated Enzyme Approach for Efficient Degradation and Detoxification of Bisphenol A and Its Analogues. ACS Sustain. Chem. Eng. 2019;7:5808–5817. doi: 10.1021/acssuschemeng.8b05432. PubMed DOI PMC
Allard P., Colaiácovo M.P. Bisphenol A Impairs the Double-Strand Break Repair Machinery in the Germline and Causes Chromosome Abnormalities. Proc. Natl. Acad. Sci. USA. 2010;107:20405–20410. doi: 10.1073/pnas.1010386107. PubMed DOI PMC
Chen Y., Shu L., Qiu Z., Lee D.Y., Settle S.J., Que Hee S., Telesca D., Yang X., Allard P. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function. PLoS Genet. 2016;12:e1006223. doi: 10.1371/journal.pgen.1006223. PubMed DOI PMC
Yu Y., Hua X., Chen H., Yang Y., Dang Y., Xiang M. Tetrachlorobisphenol A Mediates Reproductive Toxicity in Caenorhabditis elegans via DNA Damage-Induced Apoptosis. Chemosphere. 2022;300:134588. doi: 10.1016/j.chemosphere.2022.134588. PubMed DOI
Roberts A.H., Bowen J.E., Zhou X., Burke I., Wenaas M.H., Blake T.A., Timmons S.C., Kuzmanov A. Synthesis and Reproductive Toxicity of Bisphenol A Analogs with Cyclic Side Chains in Caenorhabditis elegans. Toxicol. Ind. Health. 2022;38:665–674. doi: 10.1177/07482337221117357. PubMed DOI
Rathor L., Lee H.J., McElroy T., Beck S., Bailey J., Wohlgemuth S., Kim S.-H., Heo J., Xiao R., Han S.M., et al. Bisphenol TMC Disturbs Mitochondrial Activity and Biogenesis, Reducing Lifespan and Healthspan in the Nematode Caenorhabditis elegans. bioRxiv. 2024 doi: 10.1101/2024.05.20.595050. PubMed DOI
Park H.E.H., Jung Y., Lee S.J.V. Survival Assays Using Caenorhabditis elegans. Mol. Cells. 2017;40:90–99. doi: 10.14348/molcells.2017.0017. PubMed DOI PMC
Jin L., Dou T.T., Chen J.Y., Duan M.X., Zhen Q., Wu H.Z., Zhao Y.L. Sublethal Toxicity of Graphene Oxide in Caenorhabditis elegans under Multi-Generational Exposure. Ecotoxicol. Environ. Saf. 2022;229:113064. doi: 10.1016/j.ecoenv.2021.113064. PubMed DOI
Ayuda-Durán B., Garzón-García L., González-Manzano S., Santos-Buelga C., González-Paramás A.M. Insights into the Neuroprotective Potential of Epicatechin: Effects against Aβ-Induced Toxicity in Caenorhabditis elegans. Antioxidants. 2024;13:79. doi: 10.3390/antiox13010079. PubMed DOI PMC
Kim S.W., Moon J., An Y.J. Matricidal Hatching Can Induce Multi-Generational Effects in Nematode Caenorhabditis elegans after Dietary Exposure to Nanoparticles. Environ. Sci. Pollut. Res. 2018;25:36394–36402. doi: 10.1007/s11356-018-3535-4. PubMed DOI
Zhao Y., Chen J., Wang R., Pu X., Wang D. A Review of Transgenerational and Multigenerational Toxicology in the in Vivo Model Animal Caenorhabditis elegans. J. Appl. Toxicol. 2023;43:122–145. doi: 10.1002/jat.4360. PubMed DOI
Camacho J., Truong L., Kurt Z., Chen Y.W., Morselli M., Gutierrez G., Pellegrini M., Yang X., Allard P. The Memory of Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji Demethylases Jmjd-2 and Jmjd-3/Utx-1. Cell Rep. 2018;23:2392–2404. doi: 10.1016/j.celrep.2018.04.078. PubMed DOI PMC
McDonough C.M., Guo D.J., Guo T.L. Developmental Toxicity of Bisphenol S in Caenorhabditis elegans and NODEF Mice. Neurotoxicology. 2021;87:156–166. doi: 10.1016/j.neuro.2021.09.006. PubMed DOI PMC
Liu F., Luo Q., Zhang Y., Huang K., Cao X., Cui C., Lin K., Zhang M. Trans-Generational Effect of Neurotoxicity and Related Stress Response in Caenorhabditis elegans Exposed to Tetrabromobisphenol A. Sci. Total Environ. 2020;703:134920. doi: 10.1016/j.scitotenv.2019.134920. PubMed DOI
Liu F., Cao X., Tian F., Jiang J., Lin K., Cheng J., Hu X. Continuous and Discontinuous Multi-Generational Disturbances of Tetrabromobisphenol A on Longevity in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2023;251:114522. doi: 10.1016/j.ecoenv.2023.114522. PubMed DOI
Wang D., Xing X. Assessment of Locomotion Behavioral Defects Induced by Acute Toxicity from Heavy Metal Exposure in Nematode Caenorhabditis elegans. J. Environ. Sci. 2008;20:1132–1137. doi: 10.1016/S1001-0742(08)62160-9. PubMed DOI
Zhang S., Li F., Zhou T., Wang G., Li Z. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front. Endocrinol. 2020;11:554994. doi: 10.3389/fendo.2020.554994. PubMed DOI PMC
Zheng F., Chen C., Aschner M. Neurotoxicity Evaluation of Nanomaterials Using C. elegans: Survival, Locomotion Behaviors, and Oxidative Stress. Curr. Protoc. 2022;2:e496. doi: 10.1002/cpz1.496. PubMed DOI PMC
Wang Y., Gai T., Zhang L., Chen L., Wang S., Ye T., Zhang W. Neurotoxicity of Bisphenol A Exposure on Caenorhabditis elegans Induced by Disturbance of Neurotransmitter and Oxidative Damage. Ecotoxicol. Environ. Saf. 2023;252:114617. doi: 10.1016/j.ecoenv.2023.114617. PubMed DOI
Buckingham S.D., Sattelle D.B. Fast, Automated Measurement of Nematode Swimming (Thrashing) without Morphometry. BMC Neurosci. 2009;10:84. doi: 10.1186/1471-2202-10-84. PubMed DOI PMC
Petratou D., Fragkiadaki P., Lionaki E., Tavernarakis N. Assessing Locomotory Rate in Response to Food for the Identification of Neuronal and Muscular Defects in C. elegans. STAR Protoc. 2023;5:102801. doi: 10.1016/j.xpro.2023.102801. PubMed DOI PMC
Hering I., Le D.T., von Mikecz A. How to Keep up with the Analysis of Classic and Emerging Neurotoxins: Age-Resolved Fitness Tests in the Animal Model Caenorhabditis elegans—A Step-by-Step Protocol. EXCLI J. 2022;21:344. doi: 10.17179/EXCLI2021-4626. PubMed DOI PMC
Liu Y., Zhang W., Wang Y., Liu H., Zhang S., Ji X., Qiao K. Oxidative Stress, Intestinal Damage, and Cell Apoptosis: Toxicity Induced by Fluopyram in Caenorhabditis elegans. Chemosphere. 2022;286:131830. doi: 10.1016/j.chemosphere.2021.131830. PubMed DOI
Zhang H., Gao S., Chen W. Automated Recognition and Analysis of Head Thrashes Behavior in C. elegans. BMC Bioinform. 2022;23:87. doi: 10.1186/s12859-022-04622-0. PubMed DOI PMC
Tan L., Wang S., Wang Y., He M., Liu D. Bisphenol A Exposure Accelerated the Aging Process in the Nematode Caenorhabditis elegans. Toxicol. Lett. 2015;235:75–83. doi: 10.1016/j.toxlet.2015.03.010. PubMed DOI
Zhao K., Zhang Y., Liu M., Huang Y., Wang S., An J., Wang Y., Shang Y. The Joint Effects of Nanoplastics and TBBPA on Neurodevelopmental Toxicity in Caenorhabditis elegans. Toxicol. Res. 2023;12:76–85. doi: 10.1093/toxres/tfac086. PubMed DOI PMC
Yu Y., Tan S., Guo H., Hua X., Chen H., Yang Y., Xie D., Yi C., Ling H., Xiang M. Chronic Neurotoxicity of Tetrabromobisphenol A: Induction of Oxidative Stress and Damage to Neurons in Caenorhabditis elegans. Chemosphere. 2024;350:141142. doi: 10.1016/j.chemosphere.2024.141142. PubMed DOI
Margie O., Palmer C., Chin-Sang I. C. elegans Chemotaxis Assay. J. Vis. Exp. 2013;2013:e50069. doi: 10.3791/50069. PubMed DOI PMC
Hopewell H., Floyd K.G., Burnell D., Hancock J.T., Allainguillaume J., Ladomery M.R., Wilson I.D. Residual Ground-Water Levels of the Neonicotinoid Thiacloprid Perturb Chemosensing of Caenorhabditis elegans. Ecotoxicology. 2017;26:981–990. doi: 10.1007/s10646-017-1826-z. PubMed DOI PMC
Crombie T.A., Chikuturudzi C., Cook D.E., Andersen E.C. An Automated Approach to Quantify Chemotaxis Index in C. elegans. Micro. Publ. Biol. 2022;2022:10-17912. doi: 10.17912/micropub.biology.000567. PubMed DOI PMC
Gao X., Yu J., Zhang L., Shi H., Yan Y., Han Y., Fang M., Liu Y., Wu C., Fan S., et al. Mulberrin Extends Lifespan in Caenorhabditis elegans through Detoxification Function. J. Appl. Toxicol. 2024;44:833–845. doi: 10.1002/jat.4578. PubMed DOI
Ijomone O.M., Gubert P., Okoh C.O.A., Varão A.M., Amaral L.d.O., Aluko O.M., Aschner M. Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in C. elegans. Neuromethods. 2021;172:399–426. doi: 10.1007/978-1-0716-1637-6_18. PubMed DOI PMC
Gaur A.V., Agarwal R. Risperidone Induced Alterations in Feeding and Locomotion Behavior of Caenorhabditis elegans. Curr. Res. Toxicol. 2021;2:367–374. doi: 10.1016/j.crtox.2021.10.003. PubMed DOI PMC
Boyd W.A., McBride S.J., Freedman J.H. Effects of Genetic Mutations and Chemical Exposures on Caenorhabditis elegans Feeding: Evaluation of a Novel, High-Throughput Screening Assay. PLoS ONE. 2007;2:e1259. doi: 10.1371/journal.pone.0001259. PubMed DOI PMC
Tejeda-Benitez L., Olivero-Verbel J. Caenorhabditis elegans, a Biological Model for Research in Toxicology. Rev. Environ. Contam. Toxicol. 2016;237:1–35. doi: 10.1007/978-3-319-23573-8_1. PubMed DOI
Kohra S., Kuwahara K., Takao Y., Ishibashi Y., Ho C.L., Arizono K., Tominagae N. Effect of Bisphenol A on the Feeding Behavior of Caenorhabditis elegans. J. Health Sci. 2002;48:93–95. doi: 10.1248/jhs.48.93. DOI
Yu Y., Chen H., Hua X., Dang Y., Han Y., Yu Z., Chen X., Ding P., Li H. Polystyrene Microplastics (PS-MPs) Toxicity Induced Oxidative Stress and Intestinal Injury in Nematode Caenorhabditis elegans. Sci. Total Environ. 2020;726:138679. doi: 10.1016/j.scitotenv.2020.138679. PubMed DOI
Wang F., Jin T., Li H., Long H., Liu Y., Jin S., Lu Y., Peng Y., Liu C., Zhao L., et al. Cannabidivarin Alleviates α-Synuclein Aggregation via DAF-16 in Caenorhabditis elegans. FASEB J. 2023;37:e22735. doi: 10.1096/fj.202200278RR. PubMed DOI
Imanikia S., Galea F., Nagy E., Phillips D.H., Stürzenbaum S.R., Arlt V.M. The Application of the Comet Assay to Assess the Genotoxicity of Environmental Pollutants in the Nematode Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 2016;45:356–361. doi: 10.1016/j.etap.2016.06.020. PubMed DOI PMC
Bradford B.R., Briand N.E., Fassnacht N., Gervasio E.D., Nowakowski A.M., FitzGibbon T.C., Maurina S., Benjamin A.V., Kelly M.E., Checchi P.M. Counteracting Environmental Chemicals with Coenzyme Q10: An Educational Primer for Use with “Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline”. Genetics. 2020;216:879–890. doi: 10.1534/genetics.120.303577. PubMed DOI PMC
Zhou D. Ecotoxicity of Bisphenol S to Caenorhabditis elegans by Prolonged Exposure in Comparison with Bisphenol A. Environ. Toxicol. Chem. 2018;37:2560–2565. doi: 10.1002/etc.4214. PubMed DOI
Shin N., Cuenca L., Karthikraj R., Kannan K., Colaiácovo M.P. Assessing Effects of Germline Exposure to Environmental Toxicants by High-Throughput Screening in C. elegans. PLoS Genet. 2019;15:e1007975. doi: 10.1371/journal.pgen.1007975. PubMed DOI PMC
Yang Y., Li M., Zheng J., Zhang D., Ding Y., Yu H.Q. Environmentally Relevant Exposure to Tetrabromobisphenol a Induces Reproductive Toxicity via Regulating Glucose-6-Phosphate 1-Dehydrogenase and Sperm Activation in Caenorhabditis elegans. Sci. Total Environ. 2024;907:167820. doi: 10.1016/j.scitotenv.2023.167820. PubMed DOI
Qu M., Qiu Y., Kong Y., Wang D. Amino Modification Enhances Reproductive Toxicity of Nanopolystyrene on Gonad Development and Reproductive Capacity in Nematode Caenorhabditis elegans. Environ. Pollut. 2019;254:112978. doi: 10.1016/j.envpol.2019.112978. PubMed DOI
Germoglio M., Adamo A., Incerti G., Cartenì F., Gigliotti S., Storlazzi A., Mazzoleni S. Self-DNA Exposure Induces Developmental Defects and Germline DNA Damage Response in Caenorhabditis elegans. Biology. 2022;11:262. doi: 10.3390/biology11020262. PubMed DOI PMC
Bradford B.R., Whidden E., Gervasio E.D., Checchi P.M., Raley-Susman K.M. Neonicotinoid-Containing Insecticide Disruption of Growth, Locomotion, and Fertility in Caenorhabditis elegans. PLoS ONE. 2020;15:e0238637. doi: 10.1371/journal.pone.0238637. PubMed DOI PMC
Moreman J., Lee O., Trznadel M., David A., Kudoh T., Tyler C.R. Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae. Environ. Sci. Technol. 2017;51:12796–12805. doi: 10.1021/acs.est.7b03283. PubMed DOI
Weinhouse C., Truong L., Meyer J.N., Allard P. Caenorhabditis elegans as an Emerging Model System in Environmental Epigenetics. Environ. Mol. Mutagen. 2018;59:560. doi: 10.1002/em.22203. PubMed DOI PMC
Harlow P.H., Perry S.J., Stevens A.J., Flemming A.J. Comparative Metabolism of Xenobiotic Chemicals by Cytochrome P450s in the Nematode Caenorhabditis elegans. Sci. Rep. 2018;8:13333. doi: 10.1038/s41598-018-31215-w. PubMed DOI PMC
Hunt P.R., Olejnik N., Sprando R.L. Toxicity Ranking of Heavy Metals with Screening Method Using Adult Caenorhabditis elegans and Propidium Iodide Replicates Toxicity Ranking in Rat. Food Chem. Toxicol. 2012;50:3280–3290. doi: 10.1016/j.fct.2012.06.051. PubMed DOI PMC
Ruszkiewicz J.A., Pinkas A., Miah M.R., Weitz R.L., Lawes M.J.A., Akinyemi A.J., Ijomone O.M., Aschner M. C. elegans as a Model in Developmental Neurotoxicology. Toxicol. Appl. Pharmacol. 2018;354:126–135. doi: 10.1016/j.taap.2018.03.016. PubMed DOI PMC
Wu T., Xu H., Liang X., Tang M. Caenorhabditis elegans as a Complete Model Organism for Biosafety Assessments of Nanoparticles. Chemosphere. 2019;221:708–726. doi: 10.1016/j.chemosphere.2019.01.021. PubMed DOI
Mimoto A., Fujii M., Usami M., Shimamura M., Hirabayashi N., Kaneko T., Sasagawa N., Ishiura S. Identification of an Estrogenic Hormone Receptor in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2007;364:883–888. doi: 10.1016/j.bbrc.2007.10.089. PubMed DOI
Giunti S., Andersen N., Rayes D., De Rosa M.J. Drug Discovery: Insights from the Invertebrate Caenorhabditis elegans. Pharmacol. Res. Perspect. 2021;9:e00721. doi: 10.1002/prp2.721. PubMed DOI PMC
Buoso E., Kenda M., Masi M., Linciano P., Galbiati V., Racchi M., Dolenc M.S., Corsini E. Effects of Bisphenols on RACK1 Expression and Their Immunological Implications in THP-1 Cells. Front. Pharmacol. 2021;12:743991. doi: 10.3389/fphar.2021.743991. PubMed DOI PMC
Pahović P.Š., Iulini M., Maddalon A., Galbiati V., Buoso E., Dolenc M.S., Corsini E. In Vitro Effects of Bisphenol Analogs on Immune Cells Activation and Th Differentiation. Endocr. Metab. Immune Disord. Drug Targets. 2023;23:1750–1761. doi: 10.2174/1871530323666230216150614. PubMed DOI
Lambré C., Barat Baviera J.M., Bolognesi C., Chesson A., Cocconcelli P.S., Crebelli R., Gott D.M., Grob K., Lampi E., Mengelers M., et al. Re-Evaluation of the Risks to Public Health Related to the Presence of Bisphenol A (BPA) in Foodstuffs. EFSA J. 2023;21:e06857. doi: 10.2903/J.EFSA.2023.6857. PubMed DOI PMC
Benian G.M., Epstein H.F. Caenorhabditis elegans Muscle: A Genetic and Molecular Model for Protein Interactions in the Heart. Circ. Res. 2011;109:1082–1095. doi: 10.1161/CIRCRESAHA.110.237685. PubMed DOI
McGary K.L., Park T.J., Woods J.O., Cha H.J., Wallingford J.B., Marcotte E.M. Systematic Discovery of Nonobvious Human Disease Models through Orthologous Phenotypes. Proc. Natl. Acad. Sci. USA. 2010;107:6544. doi: 10.1073/pnas.0910200107. PubMed DOI PMC
Xiong H., Pears C., Woollard A. An Enhanced C. elegans Based Platform for Toxicity Assessment. Sci. Rep. 2017;7:9839. doi: 10.1038/s41598-017-10454-3. PubMed DOI PMC