The second intracellular loop of the yeast Trk1 potassium transporter is involved in regulation of activity, and interaction with 14-3-3 proteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37168872
PubMed Central
PMC10165143
DOI
10.1016/j.csbj.2023.04.019
PII: S2001-0370(23)00173-3
Knihovny.cz E-zdroje
- Klíčová slova
- 14–3–3 proteins, Phosphorylation, Potassium ion uptake, Saccharomyces cerevisiae, Trk1,
- Publikační typ
- časopisecké články MeSH
Potassium is an essential intracellular ion, and a sufficient intracellular concentration of it is crucial for many processes; therefore it is fundamental for cells to precisely regulate K+ uptake and efflux through the plasma membrane. The uniporter Trk1 is a key player in K+ acquisition in yeasts. The TRK1 gene is expressed at a low and stable level; thus the activity of the transporter needs to be regulated at a posttranslational level. S. cerevisiae Trk1 changes its activity and affinity for potassium ion quickly and according to both internal and external concentrations of K+, as well as the membrane potential. The molecular basis of these changes has not been elucidated, though phosphorylation is thought to play an important role. In this study, we examined the role of the second, short, and highly conserved intracellular hydrophilic loop of Trk1 (IL2), and identified two phosphorylable residues (Ser882 and Thr900) as very important for 1) the structure of the loop and consequently for the targeting of Trk1 to the plasma membrane, and 2) the upregulation of the transporter's activity reaching maximal affinity under low external K+ conditions. Moreover, we identified three residues (Thr155, Ser414, and Thr900) within the Trk1 protein as strong candidates for interaction with 14-3-3 regulatory proteins, and showed, in an in vitro experiment, that phosphorylated Thr900 of the IL2 indeed binds to both isoforms of yeast 14-3-3 proteins, Bmh1 and Bmh2.
Zobrazit více v PubMed
Arino J., Ramos J., Sychrova H. Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev. 2010;74(1):95–120. doi: 10.1128/MMBR.00042-09. PubMed DOI PMC
Arino J., Ramos J., Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast. 2019;36(4):177–193. doi: 10.1002/yea.3355. PubMed DOI
Sasikumar A., Killiea D., Kennedy B., Brem R. Potassium restriction boosts vacuolar acidity and extends lifespan in yeast. Exp Gerontol. 2019;120:101–106. doi: 10.1016/j.exger.2019.02.001. PubMed DOI PMC
Ramos J., Arino J., Sychrova H. Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett. 2011;317(1):1–8. PubMed
Ruiz-Castilla F., Bieber J., Caro G., Michan C., Sychrova H., Ramos J. Regulation and activity of CaTrk1, CaAcu1 and CaHak1, the three plasma membrane potassium transporters in Candida albicans. Biochim Biophys A. 2021;1863(1):83486. doi: 10.1016/j.bbamem.2020.183486. PubMed DOI
Gaber R., Styles C., Fink G. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol. 1988;8(7):2848–2859. doi: 10.1128/mcb.8.7.2848-2859.1988. PubMed DOI PMC
Petrezselyova S., Ramos J., Sychrova H. Trk2 transporter is a relevant player in K+ supply and plasma-membrane potential control in Saccharomyces cerevisiae. Folia Microbiol. 2011;56(1):23–28. doi: 10.1007/s12223-011-0009-1. PubMed DOI
Borovikova D., Herynkova P., Rapoport A., Sychrova H. Potassium uptake system Trk2 is crucial for yeast cell viability during anhydrobiosis. FEMS Microbiol Lett. 2014;350(1):28–33. doi: 10.1111/1574-6968.12344. PubMed DOI
Dušková M., Cmunt D., Papoušková K., Masaryk J., Sychrová H. Minority potassium-uptake system Trk2 has a crucial role in yeast survival of glucose-induced cell death. Microbiology. 2021;167 doi: 10.1099/mic.0.001065. PubMed DOI
Bertl A., Ramos J., Ludwig J., Lichtenberg-Frate H., Reid J., Bihler H., Calero F., Martinez P., Ljungdahl P. Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol. 2003;47(3):767–780. doi: 10.1046/j.1365-2958.2003.03335. PubMed DOI
Navarrete C., Petrezselyova S., Barreto L., Martinez J., Zahradka J., Arino J., Sychrova H., Ramos J. Lack of Main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res. 2010;10(5):508–517. doi: 10.1111/j.1567-1364.2010.00630. PubMed DOI
Zayats V., Stockner T., Pandey S., Wortz K., Ettrich R., Ludwig J. A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues. Biochim Biophys A. 2015;1848(5):1183–1195. doi: 10.1016/j.bbamem.2015.02.007. PubMed DOI
Kale D., Spurny P., Shamayeva K., Spurna K., Kahoun D., Ganser D., Zayats V., Ludwig J. The S. cerevisiae cation translocation protein Trk1 is functional without its “long hydrophilic Loop” But LHL regulates cation translocation activity and selectivity. Biochim Biophys A. 2019;1861(8):1476–1488. doi: 10.1016/j.bbamem.2019.06.010. PubMed DOI
Rivetta A., Slayman C., Kuroda T. Quantitative modeling of chloride conductance in yeast TRK potassium transporters. Biophys J. 2005;89(4):2412–2426. doi: 10.1529/biophysj.105.066712. PubMed DOI PMC
Masaryk J., Sychrova H. Yeast Trk1 potassium transporter gradually changes its affinity in response to both external and internal signals. J Fungi. 2022;8(5):432. doi: 10.3390/jof8050432. PubMed DOI PMC
Helbig A., Rosati S., Pijnappel P., van Breukelen B., Timmers M., Mohammed S., Slijper M., Heck A. Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genom. 2010;11:685. doi: 10.1186/1471-2164-11-685. PubMed DOI PMC
Li X., Gerber S., Rudner A., Beausoleil S., Haas W., Villén J., Elias J., Gygi S. Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J Proteome Res. 2007;6(3):1190–1197. doi: 10.1021/pr060559j. PubMed DOI
Albuquerque C., Smolka M., Payne S., Bafna V., Eng J., Zhou H. A multidimensional chromatography technology for In-depth phosphoproteome analysis. Mol Cell Proteom. 2008;7:1389–1396. doi: 10.1074/mcp.M700468-MCP200. PubMed DOI PMC
Swaney D., Beltrao P., Starita L., Guo A., Rush J., Fields S., Krogan L., Vilén J. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods. 2013;10(7):676–682. doi: 10.1038/nmeth.2519. PubMed DOI PMC
Holt L., Tuch B., Vilén J., Johnson A., Gygi S., Morgan D. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science. 2009;325(5948):1682–1686. doi: 10.1126/science.1172867. PubMed DOI PMC
Perez-Valle J., Jenkins H., Merchan S., Montiel V., Ramos J., Sharma S., Serrano R., Yenush L. Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol. 2007;27(16):5725–5736. doi: 10.1128/MCB.01375-06. PubMed DOI PMC
Portillo F., Mulet J., Serrano R. A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett. 2005;579(2):512–516. doi: 10.1016/j.febslet.2004.12.019. PubMed DOI
Casado C., Yenush L., Melero C., Ruiz C., Serrano R., Perez-Valle J., Arino J., Ramos J. Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Lett. 2010;584(11):2415–2420. doi: 10.1016/j.febslet.2010.04.042. PubMed DOI
Yenush L., Merchan S., Holmes J., Serrano R. pH-responsive, posttranslational regulation of the Trk1 potassium transporter by the type 1-related Ppz1 phosphatase. Mol Cell Biol. 2005;25(19):8683–8692. doi: 10.1128/MCB.25.19.8683-8692.2005. PubMed DOI PMC
Forment J., Mulet J., Vicente O., Serrano R. The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochim Biophys A. 2002;1565(1):36–40. doi: 10.1016/s0005-2736(02)00503-5. PubMed DOI
Bridges D., Moorhead G. 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE. 2004;296:10. doi: 10.1126/stke.2962005re10. PubMed DOI
Shi L., Ren A., Zhu J., Yu H., Jiang A., Zheng H., Zhao M. 14-3-3 Proteins: a window for a deeper understanding of fungal metabolism and development. World J Microbiol Biotechnol. 2019;35(2):24. doi: 10.1007/s11274-019-2597. PubMed DOI
Smidova A., Alblova M., Kalabova D., Psenakova K., Rosulek M., Herman P., Obsil T., Obsilova V. 14-3-3 Protein masks the nuclear localization sequence of caspase-2. FEBS J. 2018;285(22):4196–4213. doi: 10.1111/febs.14670. PubMed DOI
Kalabova D., Filandr F., Alblova M., Petrvalska O., Horvath M., Man P., Obsil T., Obsilova V. 14-3-3 Protein binding blocks the dimerization interface of caspase-2. FEBS J. 2020;287(16):3494–3510. doi: 10.1111/febs.15215. PubMed DOI
van Heusden G. 14-3-3 Proteins: insights from genome-wide studies in yeast. Genomics. 2009;94(5):287–293. doi: 10.1016/j.ygeno.2009.07.004. PubMed DOI
Bruckmann A., Steensma H., de Mattos M., van Heusden G. Regulation of transcription by Saccharomyces cerevisiae 14-3-3 Proteins. Biochem J. 2004;382(3):867–875. doi: 10.1042/BJ20031885. PubMed DOI PMC
Kakiuchi K., Yamauchi Y., Taoka M., Iwago M., Fujita T., Ito T., Song S., Isobe T., Ichimura T. Proteomic analysis of in vivo 14-3-3 interactions in the yeast Saccharomyces cerevisiae. Biochemistry. 2007;46(26):7781–7792. doi: 10.1021/bi700501t. PubMed DOI
van Heusden G., Steensma H. Yeast 14-3-3 proteins. Yeast. 2006;23(3):159–171. doi: 10.1002/yea.1338. PubMed DOI
Capera J., Serrano-Novillo C., Navarro-Pérez M., Cassinelli S., Felipe A. The potassium channel odyssey: mechanisms of traffic and membrane arrangement. Int J Mol Sci. 2019;20(3):734. doi: 10.3390/ijms20030734. PubMed DOI PMC
Smidova A., Stankova K., Petrvalska O., Lazar J., Sychrova H., Obsil T., Zimmermannova O., Obsilova V. The Activity of Saccharomyces cerevisiae Na+, K+/H+ Antiporter Nha1 Is negatively regulated by 14-3-3 protein binding at serine 481. Biochim Biophys A. 2019;1866(12) doi: 10.1016/j.bbamcr.2019.118534. PubMed DOI
Duby G., Poreba W., Piotrowiak D., Bobik K., Derua R., Waelkens E., Boutry M. Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. J Biol Chem. 2009;284(7):4213–4221. doi: 10.1074/jbc.M807311200. PubMed DOI
Sottocornola B., Gazzarrini S., Olivari C., Romani G., Valbuzzi P., Thiel G., Moroni A. 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biol. 2008;10(2):231–236. doi: 10.1111/j.1438-8677.2007.00028. PubMed DOI
Guldener U., Fielder T., Beinhauer J., Hegemann J. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acid Res. 1996;24(13):2519–2524. doi: 10.1093/nar/24.13.2519. PubMed DOI PMC
Hanscho M., Ruckerbauer D.E., Chauhan N., Hofbauer H.F., Krahulec S., Nidetzky B., Kohlwein S.D., Zanghellini J., Natter K. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012;12(7):796–808. doi: 10.1111/j.1567-1364.2012.00830. PubMed DOI
Zimmermannova O., Felcmanova K., Rosas-Santiago P., Papouskova K., Pantoja O., Sychrova H. Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1. Biochim Biophys A. 2019;1866(9):1376–1388. doi: 10.1016/j.bbamcr.2019.05.005. PubMed DOI
Crooks G., Hon G., Chandonia J., Brenner S. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Blom N., Gammeltoft S., Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294(5):1351–1362. doi: 10.1006/jmbi.1999.3310. PubMed DOI
Madeira F., Tinti M., Murugesan G., Berrett E., Stafford M., Toth R., Cole C., MacKintosh C., Barton G. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics. 2015;31(14):2276–2283. doi: 10.1093/bioinformatics/btv133. (oi) PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A., Bridgland A., Meyer C., Kohl S., Ballard A., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodestein S., Silver D., Vinalys O., Senior A., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A., Zidek A., Green T., Tunyasuvunakool K., Petersen S., Jumper J., Clancy E., Green R., Vora A., Lutfi M., Figurnov M., Cowie A., Hobbs N., Kohli P., Kleywegt G., Birney E., Hassabis D., Velnkar S. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acid Res. 2021;50(1):439–444. doi: 10.1093/nar/gkab1061. PubMed DOI PMC
Goddard T., Huang C., Meng E., Pettersen E., Couch G., Morris J., Ferrin T. UCSF chimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018;27(1):14–25. doi: 10.1002/pro.3235. PubMed DOI PMC
Veisova D., Rezabkova L., Stepanek M., Novotna P., Herman P., Vecer J., Obsil T., Obsilova V. The C-terminal segment of yeast BMH Proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry. 2010;49(18):3853–3861. doi: 10.1021/bi100273k. PubMed DOI
Pohl P., Joshi R., Petrvalska O., Obsil T., Obsilova V. 14-3-3-protein regulates nedd4-2 by modulating interactions between HECT and WW domains. Commun. Biol. 2021;4:899. doi: 10.1038/s42003-021-02419-0. PubMed DOI PMC
Miranda M., Bashi E., Vylkova S., Edgerton M., Slayman C., Rivetta A. Conservation and dispersion of sequence and function in fungal TRK potassium transporters: Focus on Candida albicans. FEMS Yeast Res. 2009;9(2):278–292. doi: 10.1111/j.1567-1364.2008.00471. PubMed DOI
Eraso P., Mazon M., Portillo F. Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys A. 2006;1758(2):164–170. doi: 10.1016/j.bbamem.2006.01.010. PubMed DOI
de Nadal E., Posas F. The HOG pathway and the regulation of osmoadaptive responses in yeast. FEMS Yeast Res. 2022;22(1):foac013. doi: 10.1093/femsyr/foac013. PubMed DOI PMC
Taylor I., Wang Y., Seitz K., Baer J., Bennewitz S., Mooney B., Walker J. Analysis of phosphorylation of the receptor-like protein kinase HAESA during arabidopsis floral abscission. PLoS One. 2016;11(1) doi: 10.1371/journal.pone.0147203. PubMed DOI PMC
White D., Unwin R., Bidels E., Pierce A., Teng H., Muter J., Greystoke B., Somerville T., Grifiths J., Lovell S., Somervaille T., Delwel R., Whetton A., Meyer S. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA Binding, transcriptional repression and transforming ability. PloS One. 2013;8(6) doi: 10.1371/journal.pone.0066510. PubMed DOI PMC
Vlastaridis P., Kyriakidou P., Chaliotis A., Van de Peer Y., Oliver S., Amoutzias G. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience. 2017;6(2):1–11. doi: 10.1093/gigascience/giw015. PubMed DOI PMC
Davidson A. Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. J Bacteriol. 2002;184(5):1225–1233. doi: 10.1128/JB.184.5.1225-1233.2002. PubMed DOI PMC
Levin E., Zhiu M. Recent progress on the structure and function of the TrkH/KtrB ion channel. Curr Opin Struct Biol. 2014;27:95–101. doi: 10.1016/j.sbi.2014.06.004. PubMed DOI PMC
Chen Z., Cole P. Synthetic approaches to protein phosphorylation. Curr Opin Chem Biol. 2015;28:115–122. doi: 10.1016/j.cbpa.2015.07.001. PubMed DOI PMC
Rezaei-Ghaleh N., Amininasab M., Kumar S., Walter J., Zweckstetter M. Phosphorylation modifies the molecular stability of β-amyloid deposits. Nat Commun. 2016;7:11359. doi: 10.1038/ncomms11359. PubMed DOI PMC
Yenush L., Mulet J., Arino J., Serrano R. The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J. 2002;21(5):920–929. doi: 10.1093/emboj/21.5.920. PubMed DOI PMC
Zhao P., Zhao C., Chen D., Yun C., Li H., Bai L. Structure and activation mechanism of the hexameric plasma membrane H+-ATPase. Nat Comm. 2021;12(1) doi: 10.1038/s41467-021-26782-y. PubMed DOI PMC
Camoni L., Visconti S., Aducci P., Marra M. From plant physiology to pharmacology: fusicoccin leaves the leaves. Planta. 2019;249(1):49–57. doi: 10.1007/s00425-018-3051-2. PubMed DOI
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways