Trk2 transporter is a relevant player in K+ supply and plasma-membrane potential control in Saccharomyces cerevisiae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologický transport MeSH
- buněčná membrána fyziologie MeSH
- draslík metabolismus MeSH
- membránové potenciály * MeSH
- proteiny přenášející kationty genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- proteiny přenášející kationty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TRK1 protein, S cerevisiae MeSH Prohlížeč
- TRK2 protein, S cerevisiae MeSH Prohlížeč
In Saccharomyces cerevisiae, TRK1 and TRK2 genes encode partially redundant K(+) transporters. Direct involvement in K(+) uptake has been shown for Trk1p since cells growing under limiting environmental K(+) concentrations demand its presence. The biological role of Trk2p is less understood. In our experiments, TRK2 overexpression improved the ability of trk1 cells to grow in low K(+) and led to a higher accumulation of K(+). Using diS-C(3)(3) as a potentiometric probe, we revealed a higher hyperpolarization of trk2 cells compared to the wild type. In addition, the deletion of TRK2 in the trk1 genetic background increased the cell sensitivity to hygromycin B, spermine, and TMA. Our studies reinforced the conclusion that Trk1p is the prominent K(+) uptake transporter and for the first time revealed that though Trk2p is much less effective, its activity contributes significantly to K(+) supply and the maintenance of plasma-membrane potential.
Zobrazit více v PubMed
Biochim Biophys Acta. 2000 Mar 10;1469(1):1-30 PubMed
Nature. 2003 Oct 16;425(6959):686-91 PubMed
J Bacteriol. 1994 Jan;176(1):249-52 PubMed
Mol Cell Biol. 1991 Aug;11(8):4266-73 PubMed
Mol Cell Biol. 1988 Jul;8(7):2848-59 PubMed
Fungal Biol. 2010 Feb-Mar;114(2-3):144-50 PubMed
Nucleic Acids Res. 1996 Jul 1;24(13):2519-24 PubMed
Eukaryot Cell. 2004 Feb;3(1):100-7 PubMed
Yeast. 2006 Jun;23(8):581-9 PubMed
EMBO J. 2002 Mar 1;21(5):920-9 PubMed
FEMS Yeast Res. 2009 Sep;9(6):832-48 PubMed
J Biol Chem. 2009 Jan 30;284(5):2795-2802 PubMed
Mol Microbiol. 2003 Feb;47(3):767-80 PubMed
Nature. 1986 Feb 20-26;319(6055):689-93 PubMed
Mol Cell Biol. 1999 May;19(5):3328-37 PubMed
J Bacteriol. 1984 Sep;159(3):940-5 PubMed
Gene. 1995 Apr 14;156(1):119-22 PubMed
Yeast. 1986 Sep;2(3):163-7 PubMed
Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120 PubMed
J Biol Chem. 1998 Jun 12;273(24):14838-44 PubMed
Dimerisation of the Yeast K+ Translocation Protein Trk1 Depends on the K+ Concentration
Potassium Uptake Mediated by Trk1 Is Crucial for Candida glabrata Growth and Fitness