Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone

. 2009 Jan 30 ; 284 (5) : 2795-2802. [epub] 20081202

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19054772

Grantová podpora
R01 AI 065983 NIAID NIH HHS - United States

Odkazy

PubMed 19054772
PubMed Central PMC2631971
DOI 10.1074/jbc.m806693200
PII: S0021-9258(19)81843-4
Knihovny.cz E-zdroje

Cationic amphipathic drugs, such as amiodarone, interact preferentially with lipid membranes to exert their biological effect. In the yeast Saccharomyces cerevisiae, toxic levels of amiodarone trigger a rapid influx of Ca(2+) that can overwhelm cellular homeostasis and lead to cell death. To better understand the mechanistic basis of antifungal activity, we assessed the effect of the drug on membrane potential. We show that low concentrations of amiodarone (0.1-2 microm) elicit an immediate, dose-dependent hyperpolarization of the membrane. At higher doses (>3 microm), hyperpolarization is transient and is followed by depolarization, coincident with influx of Ca(2+) and H(+) and loss in cell viability. Proton and alkali metal cation transporters play reciprocal roles in membrane polarization, depending on the availability of glucose. Diminishment of membrane potential by glucose removal or addition of salts or in pma1, tok1Delta, ena1-4Delta, or nha1Delta mutants protected against drug toxicity, suggesting that initial hyperpolarization was important in the mechanism of antifungal activity. Furthermore, we show that the link between membrane hyperpolarization and drug toxicity is pH-dependent. We propose the existence of pH- and hyperpolarization-activated Ca(2+) channels in yeast, similar to those described in plant root hair and pollen tubes that are critical for cell elongation and growth. Our findings illustrate how membrane-active compounds can be effective microbicidals and may pave the way to developing membrane-selective agents.

Zobrazit více v PubMed

Courchesne, W. E. (2002) J. Pharmacol. Exp. Ther. 300 195–199 PubMed

Gupta, S. S., Ton, V. K., Beaudry, V., Rulli, S., Cunningham, K., and Rao, R. (2003) J. Biol. Chem. 278 28831–28839 PubMed

Afeltra, J., Vitale, R. G., Mouton, J. W., and Verweij, P. E. (2004) Antimicrob. Agents Chemother. 48 1335–1343 PubMed PMC

Guo, Q., Sun, S., Yu, J., Li, Y., and Cao, L. (2008) J. Med. Microbiol. 57 457–462 PubMed

Courchesne, W. E., and Ozturk, S. (2003) Mol. Microbiol. 47 223–234 PubMed

Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol. 168 257–269 PubMed PMC

Zhang, Y. Q., and Rao, R. (2007) J. Biol. Chem. 282 37844–37853 PubMed

Muend, S., and Rao, R. (2008) FEMS Yeast Res. 8 425–431 PubMed PMC

Serrano, R. (1983) FEBS Lett. 156 11–14 PubMed

Matsumoto, T. K., Ellsmore, A. J., Cessna, S. G., Low, P. S., Pardo, J. M., Bressan, R. A., and Hasegawa, P. M. (2002) J. Biol. Chem. 277 33075–33080 PubMed

Wallis, J. W., Chrebet, G., Brodsky, G., Rolfe, M., and Rothstein, R. (1989) Cell 58 409–419 PubMed

Maresova, L., Urbankova, E., Gaskova, D., and Sychrova, H. (2006) FEMS Yeast Res. 6 1039–1046 PubMed

Kinclova-Zimmermannova, O., Zavrel, M., and Sychrova, H. (2005) J. Biol. Chem. 280 30638–30647 PubMed

Stevens, H. C., and Nichols, J. W. (2007) J. Biol. Chem. 282 17563–17567 PubMed

Maresova, L., and Sychrova, H. (2007) BioTechniques 43 667–672 PubMed

Denksteinova, B., Gaskova, D., Herman, P., Vecer, J., Malinsky, J., Plasek, J., and Sigler, K. (1997) Folia Microbiol. (Praha) 42 221–224 PubMed

Malac, J., Urbankova, E., Sigler, K., and Gaskova, D. (2005) Int. J. Biochem. Cell Biol. 37 2536–2543 PubMed

Brett, C. L., Tukaye, D. N., Mukherjee, S., and Rao, R. (2005) Mol. Biol. Cell 16 1396–1405 PubMed PMC

Gradmann, D., Hansen, U. P., Long, W. S., Slayman, C. L., and Warncke, J. (1978) J. Membr. Biol. 39 333–367 PubMed

Ballarin-Denti, A., Slayman, C. L., and Kuroda, H. (1994) Biochim. Biophys. Acta 1190 43–56 PubMed

Perlin, D. S., Harris, S. L., Seto-Young, D., and Haber, J. E. (1989) J. Biol. Chem. 264 21857–21864 PubMed

Ramos, S., Balbin, M., Raposo, M., Valle, E., and Pardo, L. A. (1989) J. Gen. Microbiol. 135 2413–2422 PubMed

Carmelo, V., Santos, H., and Sa-Correia, I. (1997) Biochim. Biophys. Acta 1325 63–70 PubMed

Roberts, S. K. (2003) Eukaryot. Cell 2 181–190 PubMed PMC

Vergani, P., Miosga, T., Jarvis, S. M., and Blatt, M. R. (1997) FEBS Lett. 405 337–344 PubMed

Eilam, Y., and Chernichovsky, D. (1987) J. Gen. Microbiol. 133 1641–1649 PubMed

Eilam, Y., Othman, M., and Halachmi, D. (1990) J. Gen. Microbiol. 136 2537–2543 PubMed

Eilam, Y., and Othman, M. (1990) J. Gen. Microbiol. 136 861–866 PubMed

Shang, Z.-L., Ma, L.-G., Zhang, H.-L., He, R.-R., Wang, X.-C., Cui, S.-J., and Sun, D.-Y. (2005) Plant Cell Physiol. 46 598–608 PubMed

Qu, H. Y., Shang, Z. L., Zhang, S. L., Liu, L. M., and Wu, J. Y. (2007) New Phytol. 174 524–536 PubMed

Trumbore, M., Chester, D. W., Moring, J., Rhodes, D., and Herbette, L. G. (1988) Biophys. J. 54 535–543 PubMed PMC

Chatelain, P., and Laruel, R. (1985) J. Pharmacol. Sci. 74 783–784 PubMed

Rosa, S. M., Antunes-Madeira, M. C., Matos, M. J., Jurado, A. S., and Madeira, V. M. (2000) Biochim. Biophys. Acta 1487 286–295 PubMed

Marx, F., Binder, U., Leiter, E., and Posci, I. (2008) Cell. Mol. Life Sci. 65 445–454 PubMed PMC

Herbette, L. G., Trumbore, M., Chester, D. W., and Katz, A. M. (1988) J. Mol. Cell. Cardiol. 20 373–378 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...