Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AI 065983
NIAID NIH HHS - United States
PubMed
19054772
PubMed Central
PMC2631971
DOI
10.1074/jbc.m806693200
PII: S0021-9258(19)81843-4
Knihovny.cz E-zdroje
- MeSH
- amiodaron farmakologie MeSH
- fluorescence MeSH
- imunoprecipitace MeSH
- iontový transport MeSH
- lidé MeSH
- membránové proteiny * MeSH
- Saccharomyces cerevisiae účinky léků fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- amiodaron MeSH
- membránové proteiny * MeSH
Cationic amphipathic drugs, such as amiodarone, interact preferentially with lipid membranes to exert their biological effect. In the yeast Saccharomyces cerevisiae, toxic levels of amiodarone trigger a rapid influx of Ca(2+) that can overwhelm cellular homeostasis and lead to cell death. To better understand the mechanistic basis of antifungal activity, we assessed the effect of the drug on membrane potential. We show that low concentrations of amiodarone (0.1-2 microm) elicit an immediate, dose-dependent hyperpolarization of the membrane. At higher doses (>3 microm), hyperpolarization is transient and is followed by depolarization, coincident with influx of Ca(2+) and H(+) and loss in cell viability. Proton and alkali metal cation transporters play reciprocal roles in membrane polarization, depending on the availability of glucose. Diminishment of membrane potential by glucose removal or addition of salts or in pma1, tok1Delta, ena1-4Delta, or nha1Delta mutants protected against drug toxicity, suggesting that initial hyperpolarization was important in the mechanism of antifungal activity. Furthermore, we show that the link between membrane hyperpolarization and drug toxicity is pH-dependent. We propose the existence of pH- and hyperpolarization-activated Ca(2+) channels in yeast, similar to those described in plant root hair and pollen tubes that are critical for cell elongation and growth. Our findings illustrate how membrane-active compounds can be effective microbicidals and may pave the way to developing membrane-selective agents.
Zobrazit více v PubMed
Courchesne, W. E. (2002) J. Pharmacol. Exp. Ther. 300 195–199 PubMed
Gupta, S. S., Ton, V. K., Beaudry, V., Rulli, S., Cunningham, K., and Rao, R. (2003) J. Biol. Chem. 278 28831–28839 PubMed
Afeltra, J., Vitale, R. G., Mouton, J. W., and Verweij, P. E. (2004) Antimicrob. Agents Chemother. 48 1335–1343 PubMed PMC
Guo, Q., Sun, S., Yu, J., Li, Y., and Cao, L. (2008) J. Med. Microbiol. 57 457–462 PubMed
Courchesne, W. E., and Ozturk, S. (2003) Mol. Microbiol. 47 223–234 PubMed
Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol. 168 257–269 PubMed PMC
Zhang, Y. Q., and Rao, R. (2007) J. Biol. Chem. 282 37844–37853 PubMed
Muend, S., and Rao, R. (2008) FEMS Yeast Res. 8 425–431 PubMed PMC
Serrano, R. (1983) FEBS Lett. 156 11–14 PubMed
Matsumoto, T. K., Ellsmore, A. J., Cessna, S. G., Low, P. S., Pardo, J. M., Bressan, R. A., and Hasegawa, P. M. (2002) J. Biol. Chem. 277 33075–33080 PubMed
Wallis, J. W., Chrebet, G., Brodsky, G., Rolfe, M., and Rothstein, R. (1989) Cell 58 409–419 PubMed
Maresova, L., Urbankova, E., Gaskova, D., and Sychrova, H. (2006) FEMS Yeast Res. 6 1039–1046 PubMed
Kinclova-Zimmermannova, O., Zavrel, M., and Sychrova, H. (2005) J. Biol. Chem. 280 30638–30647 PubMed
Stevens, H. C., and Nichols, J. W. (2007) J. Biol. Chem. 282 17563–17567 PubMed
Maresova, L., and Sychrova, H. (2007) BioTechniques 43 667–672 PubMed
Denksteinova, B., Gaskova, D., Herman, P., Vecer, J., Malinsky, J., Plasek, J., and Sigler, K. (1997) Folia Microbiol. (Praha) 42 221–224 PubMed
Malac, J., Urbankova, E., Sigler, K., and Gaskova, D. (2005) Int. J. Biochem. Cell Biol. 37 2536–2543 PubMed
Brett, C. L., Tukaye, D. N., Mukherjee, S., and Rao, R. (2005) Mol. Biol. Cell 16 1396–1405 PubMed PMC
Gradmann, D., Hansen, U. P., Long, W. S., Slayman, C. L., and Warncke, J. (1978) J. Membr. Biol. 39 333–367 PubMed
Ballarin-Denti, A., Slayman, C. L., and Kuroda, H. (1994) Biochim. Biophys. Acta 1190 43–56 PubMed
Perlin, D. S., Harris, S. L., Seto-Young, D., and Haber, J. E. (1989) J. Biol. Chem. 264 21857–21864 PubMed
Ramos, S., Balbin, M., Raposo, M., Valle, E., and Pardo, L. A. (1989) J. Gen. Microbiol. 135 2413–2422 PubMed
Carmelo, V., Santos, H., and Sa-Correia, I. (1997) Biochim. Biophys. Acta 1325 63–70 PubMed
Roberts, S. K. (2003) Eukaryot. Cell 2 181–190 PubMed PMC
Vergani, P., Miosga, T., Jarvis, S. M., and Blatt, M. R. (1997) FEBS Lett. 405 337–344 PubMed
Eilam, Y., and Chernichovsky, D. (1987) J. Gen. Microbiol. 133 1641–1649 PubMed
Eilam, Y., Othman, M., and Halachmi, D. (1990) J. Gen. Microbiol. 136 2537–2543 PubMed
Eilam, Y., and Othman, M. (1990) J. Gen. Microbiol. 136 861–866 PubMed
Shang, Z.-L., Ma, L.-G., Zhang, H.-L., He, R.-R., Wang, X.-C., Cui, S.-J., and Sun, D.-Y. (2005) Plant Cell Physiol. 46 598–608 PubMed
Qu, H. Y., Shang, Z. L., Zhang, S. L., Liu, L. M., and Wu, J. Y. (2007) New Phytol. 174 524–536 PubMed
Trumbore, M., Chester, D. W., Moring, J., Rhodes, D., and Herbette, L. G. (1988) Biophys. J. 54 535–543 PubMed PMC
Chatelain, P., and Laruel, R. (1985) J. Pharmacol. Sci. 74 783–784 PubMed
Rosa, S. M., Antunes-Madeira, M. C., Matos, M. J., Jurado, A. S., and Madeira, V. M. (2000) Biochim. Biophys. Acta 1487 286–295 PubMed
Marx, F., Binder, U., Leiter, E., and Posci, I. (2008) Cell. Mol. Life Sci. 65 445–454 PubMed PMC
Herbette, L. G., Trumbore, M., Chester, D. W., and Katz, A. M. (1988) J. Mol. Cell. Cardiol. 20 373–378 PubMed