Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologická adaptace MeSH
- biologický transport MeSH
- buněčná membrána fyziologie MeSH
- delece genu MeSH
- DNA fungální genetika metabolismus MeSH
- draslík metabolismus MeSH
- geny hub * MeSH
- homeostáza MeSH
- homologní rekombinace MeSH
- koncentrace vodíkových iontů MeSH
- membránové potenciály MeSH
- proteiny přenášející kationty genetika metabolismus MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika fyziologie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie MeSH
- sekvenční seřazení MeSH
- Zygosaccharomyces genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- draslík MeSH
- proteiny přenášející kationty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TRK1 protein, S cerevisiae MeSH Prohlížeč
Three different transport systems exist to accumulate a sufficient amount of potassium cations in yeasts. The most common of these are Trk-type transporters, which are used by all yeast species. Though most yeast species employ two different types of transporters, we only identified one gene encoding a potassium uptake system (Trk-type) in the genome of the highly osmotolerant yeast Zygosaccharomyces rouxii, and our results showed that ZrTrk1 is its major (and probably only) specific potassium uptake system. When expressed in Saccharomyces cerevisiae, the product of the ZrTRK1 gene is localized to the plasma membrane and its presence efficiently complements the phenotypes of S. cerevisiae trk1∆ trk2∆ cells. Deletion of the ZrTRK1 gene resulted in Z. rouxii cells being almost incapable of growth at low K(+) concentrations and it changed some cell physiological parameters in a way that differs from S. cerevisiae. In contrast to S. cerevisiae, Z. rouxii cells without the TRK1 gene contained less potassium than the control cells and their plasma membrane was significantly hyperpolarized compared with those of the parental strain when grown in the presence of 100 mM KCl. On the other hand, subsequent potassium starvation led to a substantial depolarization which is again different from S. cerevisiae. Plasma-membrane hyperpolarization did not prevent the efflux of potassium from Z. rouxii trk1Δ cells during potassium starvation, and the activity of ZrPma1 is less affected by the absence of ZrTRK1 than in S. cerevisiae. The use of a newly constructed Z. rouxii-specific plasmid for the expression of pHluorin showed that the intracellular pH of the Z. rouxii wild type and the trk1∆ mutant is not significantly different. Together with the fact that Z. rouxii cells contain a significantly lower amount of intracellular potassium than identically grown S. cerevisiae cells, our results suggest that this highly osmotolerant yeast species maintain its intracellular pH and potassium homeostasis in way(s) partially distinct from S. cerevisiae.
Zobrazit více v PubMed
Biochim Biophys Acta. 2000 Mar 10;1469(1):1-30 PubMed
Nature. 1986 Feb 20-26;319(6055):689-93 PubMed
Mol Cell Biol. 1988 Jul;8(7):2848-59 PubMed
Nucleic Acids Res. 2009 Jan;37(Database issue):D274-8 PubMed
Cell Mol Life Sci. 2010 Aug;67(15):2511-32 PubMed
Mol Microbiol. 2003 Feb;47(3):767-80 PubMed
Microbiology (Reading). 1999 Jan;145 ( Pt 1):241-248 PubMed
Bioinformatics. 2007 Nov 1;23(21):2947-8 PubMed
Nature. 1998 Jul 9;394(6689):192-5 PubMed
Genetics. 2006 Feb;172(2):771-81 PubMed
FEMS Microbiol Lett. 2011 Apr;317(1):1-8 PubMed
Mol Microbiol. 2000 Aug;37(3):671-9 PubMed
FEMS Yeast Res. 2009 Mar;9(2):278-92 PubMed
Pflugers Arch. 2011 Aug;462(2):315-30 PubMed
FEMS Yeast Res. 2007 Dec;7(8):1285-94 PubMed
Mol Microbiol. 2001 May;40(3):656-68 PubMed
Folia Microbiol (Praha). 2011 Jan;56(1):23-8 PubMed
FEMS Yeast Res. 2012 Jun;12(4):439-46 PubMed
Yeast. 1986 Sep;2(3):163-7 PubMed
Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120 PubMed
J Biochem. 1991 Aug;110(2):237-40 PubMed
J Biol Chem. 1998 Jun 12;273(24):14838-44 PubMed
FEMS Yeast Res. 2006 Nov;6(7):1039-46 PubMed
Microbiology (Reading). 2007 Sep;153(Pt 9):3034-3043 PubMed
Yeast. 2001 Jun;18(8):737-44 PubMed
FEMS Yeast Res. 2005 Feb;5(4-5):411-7 PubMed
Biophys J. 1999 Aug;77(2):789-807 PubMed
Yeast. 1998 Sep 30;14(13):1189-97 PubMed
Fungal Biol. 2010 Feb-Mar;114(2-3):144-50 PubMed
Nucleic Acids Res. 1996 Jul 1;24(13):2519-24 PubMed
Nature. 2011 Mar 17;471(7338):336-40 PubMed
Int J Food Microbiol. 2007 Mar 10;114(2):234-42 PubMed
Yeast. 2006 Jun;23(8):581-9 PubMed
FEMS Yeast Res. 2010 Aug 1;10(5):508-17 PubMed
Mol Biol Evol. 2007 Aug;24(8):1596-9 PubMed
J Biosci Bioeng. 1999;88(2):136-42 PubMed
Genes Cells. 2011 Feb;16(2):152-65 PubMed
J Biol Chem. 2005 Aug 26;280(34):30638-47 PubMed
Eukaryot Cell. 2004 Apr;3(2):359-68 PubMed
Yeast. 2010 Jun;27(6):317-25 PubMed
Genetics. 1990 Jun;125(2):305-12 PubMed
FEMS Yeast Res. 2004 Jan;4(4-5):505-10 PubMed
J Biol Chem. 2009 Jan 30;284(5):2795-2802 PubMed
Biochim Biophys Acta. 1990 Nov 16;1029(2):211-7 PubMed
Science. 1998 Apr 3;280(5360):69-77 PubMed
Fungal Genet Biol. 2008 Oct;45(10):1439-47 PubMed
Potassium Uptake Mediated by Trk1 Is Crucial for Candida glabrata Growth and Fitness