Plasma-membrane hyperpolarization diminishes the cation efflux via Nha1 antiporter and Ena ATPase under potassium-limiting conditions
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buněčná membrána metabolismus MeSH
- draslík metabolismus MeSH
- draslíkové kanály genetika metabolismus MeSH
- kationty metabolismus MeSH
- membránové potenciály * MeSH
- Na(+)-H(+) antiport metabolismus MeSH
- proteiny přenášející kationty metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika fyziologie MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- draslíkové kanály MeSH
- ENA1 protein, S cerevisiae MeSH Prohlížeč
- kationty MeSH
- Na(+)-H(+) antiport MeSH
- NHA1 protein, S cerevisiae MeSH Prohlížeč
- proteiny přenášející kationty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- sodíko-draslíková ATPasa MeSH
- TOK1 protein, S cerevisiae MeSH Prohlížeč
Saccharomyces cerevisiae extrudes K(+) cations even when potassium is only present in scarce amounts in the environment. Lost potassium is taken up by the Trk1 and Trk2 uptake systems. If the Trk transporters are absent or nonfunctional, the efflux of potassium is significantly diminished. A series of experiments with strains lacking various combinations of potassium efflux and uptake systems revealed that all three potassium-exporting systems the Nha1 antiporter, Ena ATPase and Tok1 channel contribute to potassium homeostasis and are active upon potassium limitation in wild-type cells. In trk1Δ trk2Δ mutants, the potassium efflux via potassium exporters Nha1 and Ena1 is diminished and can be restored either by the expression of TRK1 or deletion of TOK1. In both cases, the relative hyperpolarization of trk1Δ trk2Δ cells is decreased. Thus, it is the plasma-membrane potential which serves as the common mechanism regulating the activity of K(+) exporting systems. There is a continuous uptake and efflux of potassium in yeast cells to regulate their membrane potential and thereby other physiological parameters, and the cells are able to quickly and efficiently compensate for a malfunction of potassium transport in one direction by diminishing the transport in the other direction.
Citace poskytuje Crossref.org
Dimerisation of the Yeast K+ Translocation Protein Trk1 Depends on the K+ Concentration