The Hrk1 kinase is a determinant of acetic acid tolerance in yeast by modulating H+ and K+ homeostasis

. 2023 Dec 04 ; 10 (12) : 261-276. [epub] 20231114

Status PubMed-not-MEDLINE Jazyk angličtina Země Rakousko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38053573

Acetic acid-induced stress is a common challenge in natural environments and industrial bioprocesses, significantly affecting the growth and metabolic performance of Saccharomyces cerevisiae. The adaptive response and tolerance to this stress involves the activation of a complex network of molecular pathways. This study aims to delve deeper into these mechanisms in S. cerevisiae, particularly focusing on the role of the Hrk1 kinase. Hrk1 is a key determinant of acetic acid tolerance, belonging to the NPR/Hal family, whose members are implicated in the modulation of the activity of plasma membrane transporters that orchestrate nutrient uptake and ion homeostasis. The influence of Hrk1 on S. cerevisiae adaptation to acetic acid-induced stress was explored by employing a physiological approach based on previous phosphoproteomics analyses. The results from this study reflect the multifunctional roles of Hrk1 in maintaining proton and potassium homeostasis during different phases of acetic acid-stressed cultivation. Hrk1 is shown to play a role in the activation of plasma membrane H+-ATPase, maintaining pH homeostasis, and in the modulation of plasma membrane potential under acetic acid stressed cultivation. Potassium (K+) supplementation of the growth medium, particularly when provided at limiting concentrations, led to a notable improvement in acetic acid stress tolerance of the hrk1Δ strain. Moreover, abrogation of this kinase expression is shown to confer a physiological advantage to growth under K+ limitation also in the absence of acetic acid stress. The involvement of the alkali metal cation/H+ exchanger Nha1, another proposed molecular target of Hrk1, in improving yeast growth under K+ limitation or acetic acid stress, is proposed.

Zobrazit více v PubMed

Caspeta L, Castillo T, Nielsen J. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol. 2015;3:184. doi: 10.3389/fbioe.2015.00184. PubMed DOI PMC

Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, Sanchez I, Couloux A, Guy J, Franco-Duarte R, Marcet-Houben M, Gabaldon T, Schuller D, Sampaio JP, Dequin S. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol Biol Evol. 2018;35(7):1712–1727. doi: 10.1093/molbev/msy066. PubMed DOI PMC

Li B, Liu N, Zhao X. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnol Biofuels Bioprod. 2022;15(1):28. doi: 10.1186/s13068-022-02127-9. PubMed DOI PMC

Palma M, Guerreiro JF, Sá-Correia I. Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Front Microbiol. 2018;9:274. doi: 10.3389/fmicb.2018.00274. PubMed DOI PMC

Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. App Microbiol Biotechnol. 2019;103:159–175. doi: 10.1007/s00253-018-9478-3. PubMed DOI

Estruch F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev. 2000;24(4):469–486. doi: 10.1111/j.1574-6976.2000.tb00551.x. PubMed DOI

Soontorngun N. Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae. Curr Genet. 2017;63:1–7. doi: 10.1007/s00294-016-0609-z. PubMed DOI

Patel A, Shah AR. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J Bioresources Bioproducts. 2021;6(2):108–128. doi: 10.1016/j.jobab.2021.02.001. DOI

Guaragnella N, Bettiga M. Acetic acid stress in budding yeast: From molecular mechanisms to applications. Yeast. 2021;38(7):391–400. doi: 10.1002/yea.3651. PubMed DOI PMC

Geng P, Zhang L, Shi GY. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol. 2017;33:1–8. doi: 10.1007/s11274-017-2259-9. PubMed DOI

Mollapour M, Shepherd A, Piper PW. Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast. 2008;25(3):169–177. doi: 10.1002/yea.1576. PubMed DOI

Fernandes A, Mira N, Vargas R, Canelhas I, Sá-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337(1):95–103. doi: 10.1016/j.bbrc.2005.09.010. PubMed DOI

Mira NP, Becker JD, Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. Omics. 2010;14(5):587–601. doi: 10.1089/omi.2010.0048. PubMed DOI PMC

Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sá-Correia I. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 2011;39(16):6896–6907. doi: 10.1093/nar/gkr228. PubMed DOI PMC

Antunes M, Sá-Correia I. The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J. 2022;15(20):5698–5712. doi: 10.1016/j.csbj.2022.10.006. PubMed DOI PMC

Guerreiro JF, Mira NP, Santos AX, Riezman H, Sá-Correia I. Membrane phosphoproteomics of yeast early response to acetic acid: role of Hrk1 kinase and lipid biosynthetic pathways, in particular sphingolipids. Front Microbiol. 2017;8:1302. doi: 10.3389/fmicb.2017.01302. PubMed DOI PMC

Li J, Paulo JA, Nusinow DP, Huttlin EL, Gygi SP. Investigation of proteomic and phosphoproteomic responses to signaling network perturbations reveals functional pathway organizations in yeast. Cell Rep. 2019;29(7):2092–2104. doi: 10.1016/j.celrep.2019.10.034. PubMed DOI PMC

Dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I. MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol. 2014;5:180. doi: 10.3389/fphys.2014.00180. PubMed DOI PMC

Sá-Correia I, Godinho CP. Exploring the biological function of efflux pumps for the development of superior industrial yeasts. Curr Opin Biotechnol. 2022;74:32–41. doi: 10.1016/j.copbio.2021.10.014. PubMed DOI

Vargas RC, García-Salcedo R, Tenreiro S, Teixeira MC, Fernandes AR, Ramos J, Sá-Correia I. Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. Eukaryot Cell. 2007;6(2):134–142. doi: 10.1128/ec.00290-06. PubMed DOI PMC

Goossens A, de la Fuente N, Forment J, Serrano R, Portillo F. Regulation of yeast H+-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol. 2000;20(20):7654–7661. doi: 10.1128/MCB.20.20.7654-7661.2000. PubMed DOI PMC

Serrano R, Kielland-Brandt MC, Fink GR. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986;319(6055):689–693. doi: 10.1038/319689a0. PubMed DOI

Goffeau A, Slayman CW. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. PubMed DOI

Malpartida F, Serrano R. Proton translocation catalyzed by the purified yeast plasma membrane ATPase reconstituted in liposomes. FEBS Lett. 1981;131(2):351–354. doi: 10.1016/0014-5793(81)80401-2. DOI

Morsomme P, Slayman CW, Goffeau A. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase. Biochim Biophys Acta. 2000;1469(3):133–157. doi: 10.1016/S0304-4157(00)00015-0. PubMed DOI

Lee Y, Nasution O, Lee YM, Kim E, Choi W, Kim W. Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2017;101:229–239. doi: 10.1007/s00253-016-7898-5. PubMed DOI

Salas-Navarrete PC, Rosas-Santiago P, Suárez-Rodríguez R, Martínez A, Caspeta L. Adaptive responses of yeast strains tolerant to acidic pH, acetate, and supraoptimal temperature. Appl Microbiol Biotechnol. 2023;107(12):4051–4068. doi: 10.1007/s00253-023-12556-7. PubMed DOI PMC

Ullah A, Orij R, Brul S, Smits GJ. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environment Microbiol. 2012;78(23):8377–8387. doi: 10.1128/AEM.02126-12. PubMed DOI PMC

Eraso P, Gancedo C. Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett. 1987;224(1):187–192. doi: 10.1016/0014-5793(87)80445-3. PubMed DOI

Eraso P, Cid A, Serrano R. Tight control of the amount of yeast plasma membrane ATPase during changes in growth conditions and gene dosage. FEBS Lett. 1987;224(1):193–197. doi: 10.1016/0014-5793(87)80446-5. PubMed DOI

Carmelo V, Santos H, Sá-Correia I. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta. 1997;1325(1):63–70. doi: 10.1016/S0005-2736(96)00245-3. PubMed DOI

Guadalupe Cabral M, Sá-Correia I, Viegas C. Adaptative responses in yeast to the herbicide 2-methyl-4-chlorophenoxyacetic acid at the level of intracellular pH homeostasis. J Appl Microbiol. 2004;96(3):603–612. doi: 10.1111/j.1365-2672.2004.02199.x. PubMed DOI

Viegas CA, Sá-Correia I. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. Microbiol. 1991;137(3):645–651. doi: 10.1099/00221287-137-3-645. PubMed DOI

Viegas CA, Almeida PF, Cavaco M, Sá-Correia I. The H+-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl Environment Microbiol. 1998;64(2):779–783. doi: 10.1128/AEM.64.2.779-783.1998. PubMed DOI PMC

Prior C, Potier S, Souciet JL, Sychrová H. Characterization of the NHA1 gene encoding a Na+/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 1996;387(1):89–93. doi: 10.1016/0014-5793(96)00470-X. PubMed DOI

Ariño J, Ramos J, Sychrová H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast. 2019;36(4):177–193. doi: 10.1002/yea.3355. PubMed DOI

Kinclová O, Ramos J, Potier S, Sychrová H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol. 2001;40(3):656–668. doi: 10.1046/j.1365-2958.2001.02412.x. PubMed DOI

Masaryk J, Sychrová H. Yeast Trk1 potassium transporter gradually changes its affinity in response to both external and internal signals. J Fungi. 2022;8(5):432. doi: 10.3390/jof8050432. PubMed DOI PMC

Brett CL, Tukaye DN, Mukherjee S, Rao R. The yeast endosomal Na+ (K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell. 2005;16(3):1396–1405. doi: 10.1091/mbc.e04-11-0999. PubMed DOI PMC

Kinclova-Zimmermannova O, Gaskova D, Sychrová H. The Na+, K+/H+-antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6(5):792–800. doi: 10.1111/j.1567-1364.2006.00062.x. PubMed DOI

Navarrete C, Petrezsélyové S, Barreto L, Martínez JL, Zahrádka J, Ariño J, Sychrová H, Ramos J. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res. 2010;10(5):508–517. doi: 10.1111/j.1567-1364.2010.00630.x. PubMed DOI

Petrezsélyová S, Ramos J, Sychrová H. Trk2 transporter is a relevant player in K+ supply and plasma membrane potential control in Saccharomyces cerevisiae. Folia Microbiol. 2011;56:23–28. doi: 10.1007/s12223-011-0009-1. PubMed DOI

Sychrová H, Ramírez J, Pena A. Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999;171(2):167–172. doi: 10.1111/j.1574-6968.1999.tb13428.x. PubMed DOI

Volkov V. Quantitative description of ion transport via plasma membrane of yeast and small cells. Front Plant Sci. 2015;6:425. doi: 10.3389/fpls.2015.00425. PubMed DOI PMC

Kawahata M, Masaki K, Fujii T, Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006;6(6):924–936. doi: 10.1111/j.1567-1364.2006.00089.x. PubMed DOI

Macpherson N, Shabala L, Rooney H, Jarman MG, Davies JM. Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiol. 2005;151(6):1995–2003. doi: 10.1099/mic.0.27502-0. PubMed DOI

Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Fact. 2010;9(1):1–13. doi: 10.1186/1475-2859-9-79. PubMed DOI PMC

Henriques SF, Mira NP, Sá-Correia I. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. Biotechnol Biofuels. 2017;10:1–11. doi: 10.1186/s13068-017-0781-5. PubMed DOI PMC

Yenush L. Potassium and sodium transport in yeast. Adv Exp Med Biol. 2016;892:187–228. doi: 10.1007/978-3-319-25304-6_8. PubMed DOI

Ke R, Ingram PJ, Haynes K. An integrative model of ion regulation in yeast. PLoS Comput Biol. 2013;9(1):e1002879. doi: 10.1371/journal.pcbi.1002879. PubMed DOI PMC

Orij R, Brul S, Smits GJ. Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta. 2011;1810(10):933–944. doi: 10.1016/j.bbagen.2011.03.011. PubMed DOI

Serrano R, Mulet JM, Rios G, Marquez JA, De Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C. A glimpse of the mechanisms of ion homeostasis during salt stress. J Experiment Botany. 1999. pp. 1023–1036. DOI

Ariño J, Ramos J, Sychrová H. Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev. 2010;74(1):95–120. doi: 10.1128/mmbr.00042-09. PubMed DOI PMC

Cyert MS, Philpott CC. Regulation of cation balance in Saccharomyces cerevisiae. Genetics. 2013;193(3):677–713. doi: 10.1534/genetics.112.147207. PubMed DOI PMC

Godinho CP, Sá-Correia I. Physiological genomics of multistress resistance in the yeast cell model and factory: Focus on MDR/MXR transporters. Prog Mol Subcell Biol. 2019;58:1–35. doi: 10.1007/978-3-030-13035-0_1. PubMed DOI

Lin NX, Xu Y, Yu XW. Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Syst Microbiol and Biomanuf. 2021;2:232–245. doi: 10.1007/s43393-021-00058-4. DOI

Bañuelos MA, Sychrová H, Bleykasten-Grosshans C, Souciet JL, Potier S. The Nhal antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiol. 1998;144(10):2749–2758. doi: 10.1099/00221287-144-10-2749. PubMed DOI

Maresova L, Urbankova E, Gaskova D, Sychrová H. Measurements of plasma membrane potential changes in Saccharomyces cerevisiae cells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Res. 2006;6(7):1039–1046. doi: 10.1111/j.1567-1364.2006.00140.x. PubMed DOI

Ruiz A, Ariño J. Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot Cell. 2007;6(12):2175–2183. doi: 10.1128/ec.00337-07. PubMed DOI PMC

Petrezselyova S, Zahradka J, Sychrová H. Saccharomyces cerevisiae BY4741 and W303-1a laboratory strains differ in salt tolerance. Fungal Biol. 2010;114(2-3):144–150. doi: 10.1016/j.funbio.2009.11.002. PubMed DOI

Elicharova H, Herynkova P, Zimmermannova O, Sychrová H. Potassium uptake systems of Candida krusei. Yeast. 2019;36(7):439–448. doi: 10.1002/yea.3396. PubMed DOI

Petrezselyova S, Kinclova-Zimmermannova O, Sychrová H. Vhc1, a novel transporter belonging to the family of electroneutral cation–Cl− cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. Biochim Biophys Acta. 2013;1828(2):623–631. doi: 10.1016/j.bbamem.2012.09.019. PubMed DOI

Zimmermannová O, Felcmanová K, Rosas-Santiago P, Papousková K, Pantoja O, Sychrová H. Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1. Biochim Biophys Acta. 2019;1866(9):1376–1388. doi: 10.1016/j.bbamcr.2019.05.005. PubMed DOI

Antunes M, Palma M, Sá-Correia I. Transcriptional profiling of Zygosaccharomyces bailii early response to acetic acid or copper stress mediated by ZbHaa1. Sci Rep. 2018;8(1):14122. doi: 10.1038/s41598-018-32266-9. PubMed DOI PMC

Xu Q, Bai C, Liu Y, Song L, Tian L, Yan Y, Zhou J, Zhou X, Zhang Y, Cai M. Modulation of acetate utilization in Komagataella phaffii by metabolic engineering of tolerance and metabolism. Biotechnol Biofuels. 2019;12(1):1–14. doi: 10.1186/s13068-019-1404-0. PubMed DOI PMC

McCusker JH, Perlin DS, Haber JE. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol. 1987;7(11):4082–4088. doi: 10.1128/mcb.7.11.4082-4088.1987. PubMed DOI PMC

Pereira RR, Castanheira D, Teixeira JA, Bouillet LE, Ribeiro EM, Trópia MM, Alvarez F, Correa LF, Mota BE, Conceição LEF, Castro IM, Brandão RL. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells. FEMS Yeast Res. 2015;15(2):fov003. doi: 10.1093/femsyr/fov003. PubMed DOI

Xu X, Williams TC, Divne C, Pretorius IS, Paulsen IT. Evolutionary engineering in Saccharomyces cerevisiae reveals a Trk1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol Biofuels. 2019;12:1–14. doi: 10.1186/s13068-019-1427-6. PubMed DOI PMC

Guerreiro JF, Muir A, Ramachandran S, Thorner J, Sá-Correia I. Sphingolipid biosynthesis upregulation by tor complex 2–Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem J. 2016;473(23):4311–4325. doi: 10.1042/BCJ20160565. PubMed DOI PMC

Ribeiro RA, Vitorino MV, Godinho CP, Bourbon-Melo N, Robalo TT, Fernandes F, Rodrigues MS, Sá-Correia I. Yeast adaptive response to acetic acid stress involves structural alterations and increased stiffness of the cell wall. Sci Rep. 2021;11(1):12652. doi: 10.1038/s41598-021-92069-3. PubMed DOI PMC

Cui Z, Hirata D, Tsuchiya E, Osada H, Miyakawa T. The multidrug resistance-associated protein (MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions. J Biol Chem. 1996;271(25):14712–14716. doi: 10.1074/jbc.271.25.14712. PubMed DOI

Grigoras I, Lazard M, Plateau P, Blanquet S. Functional characterization of the Saccharomyces cerevisiae ABC-transporter Yor1p overexpressed in plasma membranes. Biochim Biophys Acta. 2008;1778(1):68–78. doi: 10.1016/j.bbamem.2007.08.035. PubMed DOI

Zahrádka J, Sychrová H. Plasma-membrane hyperpolarization diminishes the cation efflux via Nha1 antiporter and ENA ATPase under potassium-limiting conditions. FEMS Yeast Res. 2012;12(4):439–446. doi: 10.1111/j.1567-1364.2012.00793.x. PubMed DOI

Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L, Yenush L, Ariño J, Ramos J, Kschischo M. Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol. 2012;8(6):e1002548. doi: 10.1371/journal.pcbi.1002548. PubMed DOI PMC

Hess DC, Lu W, Rabinowitz JD, Botstein D. Ammonium toxicity and potassium limitation in yeast. PLoS Biol. 2006;4(11):e351. doi: 10.1371/journal.pbio.0040351. PubMed DOI PMC

Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann J. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519–2524. doi: 10.1093/nar/24.13.2519. PubMed DOI PMC

Zimmermannova O, Salazar A, Sychrová H, Ramos J. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance. FEMS Yeast Res. 2015;15(4):fov029. doi: 10.1093/femsyr/fov029. PubMed DOI

Hanscho M, Ruckerbauer DE, Chauhan N, Hofbauer HF, Krahulec S, Nidetzky B, Kohlwein SD, Zanghellini J, Natter K. Nutritional requirements of the by series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012;12(7):796–808. doi: 10.1111/j.1567-1364.2012.00830.x. PubMed DOI

Rosa MF, Sá-Correia I. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environment Microbiol. 1991;57(3):830–835. doi: 10.1128/aem.57.3.830-835.1991. PubMed DOI PMC

Maresová L, Hosková B, Urbánková E, Chaloupka R, Sychrová H. New applications of phluorin-measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast. 2010;27(6):317–325. doi: 10.1002/yea.1755. PubMed DOI

Cabrito TR, Teixeira MC, Singh A, Prasad R, Sá-Correia I. The yeast ABC transporter Pdr18 (ORF YNR070W) controls plasma membrane sterol composition, playing a role in multidrug resistance. Biochem J. 2011;440(2):195–202. doi: 10.1042/BJ20110876S. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...