Complementary Methods of Processing diS-C3(3) Fluorescence Spectra Used for Monitoring the Plasma Membrane Potential of Yeast: Their Pros and Cons
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24258003
DOI
10.1007/s10895-013-1323-6
PII: 10.1007/s10895-013-1323-6
Knihovny.cz E-zdroje
- Klíčová slova
- Fluorescent probe, Plasma membrane potential, Saccharomyces cerevisiae, Spectral analysis, Yeast,
- MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie metody MeSH
- karbocyaniny chemie MeSH
- membránové potenciály * MeSH
- Saccharomyces cerevisiae chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3,3'-dipropylthiacarbocyanine MeSH Prohlížeč
- fluorescenční barviva MeSH
- karbocyaniny MeSH
Carbocyanine dye diS-C3(3) was repeatedly employed in monitoring the plasma membrane potential of yeast and other living cells. Four methods of measuring and evaluating probe fluorescence signal were used in different studies, based on following fluorescence parameters: fluorescence intensity emitted within a certain spectral interval, F(580)/F(560) fluorescence emission ratio, wavelength of emission spectrum maximum, and the ratio of respective fluorescence intensities corresponding to the diS-C3(3) bound to cytosolic macromolecules and remaining dissolved in the aqueous cell medium (i.e., unbound, or free). Here we show that data corresponding to the three latter spectral assessments of diS-C3(3) accumulation in cells is mutually convertible, which means that their alternative use cannot lead to ambiguities in the interpretation of the results of biological experiments. On the other hand, experiments based on the effortless measurements of fluorescence intensities should be interpreted cautiously because controversial results can be obtained, depending on the particular choice of cell-to-dye concentration ratio and emission wavelength.
Zobrazit více v PubMed
Arch Biochem Biophys. 1984 May 15;231(1):217-25 PubMed
J Bioenerg Biomembr. 2010 Oct;42(5):419-32 PubMed
FEMS Yeast Res. 2006 Nov;6(7):1039-46 PubMed
Folia Microbiol (Praha). 1997;42(3):221-4 PubMed
Biochim Biophys Acta. 1994 Dec 30;1196(2):181-90 PubMed
Biochim Biophys Acta. 2001 Mar 9;1511(1):74-9 PubMed
J Bioenerg Biomembr. 2012 Oct;44(5):559-69 PubMed
J Bioenerg Biomembr. 2013 Dec;45(6):561-8 PubMed
Yeast. 1998 Sep 30;14(13):1189-97 PubMed
Fungal Biol. 2010 Feb-Mar;114(2-3):144-50 PubMed
Folia Microbiol (Praha). 2000;45(3):225-9 PubMed
J Biol Chem. 1998 May 15;273(20):12612-22 PubMed
Int J Biochem Cell Biol. 1999 May;31(5):575-84 PubMed
J Biol Chem. 2009 Jan 30;284(5):2795-2802 PubMed