Trk1-mediated potassium uptake contributes to cell-surface properties and virulence of Candida glabrata
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31101845
PubMed Central
PMC6525180
DOI
10.1038/s41598-019-43912-1
PII: 10.1038/s41598-019-43912-1
Knihovny.cz E-zdroje
- MeSH
- biofilmy růst a vývoj MeSH
- buněčná adheze fyziologie MeSH
- buněčná membrána metabolismus MeSH
- buněčné linie MeSH
- Candida glabrata genetika metabolismus patogenita MeSH
- draslík metabolismus MeSH
- draslíko-vodíkové antiportéry genetika MeSH
- Drosophila melanogaster mikrobiologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- iontový transport MeSH
- lidé MeSH
- makrofágy imunologie MeSH
- membránové potenciály fyziologie MeSH
- můry mikrobiologie MeSH
- povrchové vlastnosti MeSH
- proteiny přenášející kationty genetika MeSH
- regulace genové exprese u hub genetika MeSH
- THP-1 buňky MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- draslíko-vodíkové antiportéry MeSH
- proteiny přenášející kationty MeSH
- Trk1 protein, Candida albicans MeSH Prohlížeč
The absence of high-affinity potassium uptake in Candida glabrata, the consequence of the deletion of the TRK1 gene encoding the sole potassium-specific transporter, has a pleiotropic effect. Here, we show that in addition to changes in basic physiological parameters (e.g., membrane potential and intracellular pH) and decreased tolerance to various cell stresses, the loss of high affinity potassium uptake also alters cell-surface properties, such as an increased hydrophobicity and adherence capacity. The loss of an efficient potassium uptake system results in diminished virulence as assessed by two insect host models, Drosophila melanogaster and Galleria mellonella, and experiments with macrophages. Macrophages kill trk1Δ cells more effectively than wild type cells. Consistently, macrophages accrue less damage when co-cultured with trk1Δ mutant cells compared to wild-type cells. We further show that low levels of potassium in the environment increase the adherence of C. glabrata cells to polystyrene and the propensity of C. glabrata cells to form biofilms.
Department of Microbiology University of Szeged Interdisciplinary Excellence Centre Szeged Hungary
MTA SZTE Lendület Mycobiome Research Group University of Szeged Szeged Hungary
Zobrazit více v PubMed
Azie N, et al. The PATH (Prospective Antifungal Therapy) Alliance (R) registry and invasive fungal infections: update 2012. Diagn. Microbiol. Infect. Dis. 2012;73:293–300. doi: 10.1016/j.diagmicrobio.2012.06.012. PubMed DOI
Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn. Microbiol. Infect. Dis. 2012;73:45–48. doi: 10.1016/j.diagmicrobio.2012.02.001. PubMed DOI
Khatib R, Johnson LB, Fakih MG, Riederer K, Briski L. Current trends in candidemia and species distribution among adults: Candida glabrata surpasses C. albicans in diabetic patients and abdominal sources. Mycoses. 2016;59:781–786. doi: 10.1111/myc.12531. PubMed DOI
Tortorano AM, et al. Candidaemia in Europe: epidemiology and resistance. Int. J. Antimicrob. Agents. 2006;27:359–366. doi: 10.1016/j.ijantimicag.2006.01.002. PubMed DOI
Brown GD, et al. Hidden killers: human fungal infections. Sci. Transl. Med. 2012;4:165rv113. doi: 10.1126/scitranslmed.3004404. PubMed DOI
Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 2010;36:1–53. doi: 10.3109/10408410903241444. PubMed DOI
Brown AJP, Haynes K, Quinn J. Nitrosative and oxidative stress responses in fungal pathogenicity. Curr. Opin. Microbiol. 2009;12:384–391. doi: 10.1016/j.mib.2009.06.007. PubMed DOI PMC
Rodrigues CF, Silva S, Henriques M. Candida glabrata: a review of its features and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33:673–688. doi: 10.1007/s10096-013-2009-3. PubMed DOI
Silva S, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012;36:288–305. doi: 10.1111/j.1574-6976.2011.00278.x. PubMed DOI
Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: Beyond the Candida albicans paradigm. PLoS Pathogens. 2013;9:3550–3550. doi: 10.1371/journal.ppat.1003550. PubMed DOI PMC
Gabaldon T, Carrete L. The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Res. 2016;16:fov110. doi: 10.1093/femsyr/fov110. PubMed DOI PMC
Roetzer A, Gabaldon T, Schuller C. From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol. Lett. 2011;314:1–9. doi: 10.1111/j.1574-6968.2010.02102.x. PubMed DOI PMC
Mansour MK, Levitz SM. Interactions of fungi with phagocytes. Curr. Opin. Microbiol. 2002;5:359–365. doi: 10.1016/S1369-5274(02)00342-9. PubMed DOI
Steinberg BE, et al. A cation counterflux supports lysosomal acidification. J. Cell Biol. 2010;189:1171–1186. doi: 10.1083/jcb.200911083. PubMed DOI PMC
Kaloriti D, et al. Combinatorial stresses kill pathogenic Candida species. Med. Mycol. 2012;50:699–709. doi: 10.3109/13693786.2012.672770. PubMed DOI PMC
Nikolaou E, et al. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evolutionary Biology. 2009;9:Artn 4410. doi: 10.1186/1471-2148-9-44. PubMed DOI PMC
de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell. 2013;12:470–481. doi: 10.1128/EC.00364-12. PubMed DOI PMC
Gomez-Molero E, et al. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins. FEMS Yeast Res. 2015;15:fov098. doi: 10.1093/femsyr/fov098. PubMed DOI
Luo G, Samaranayake LP. Candida glabrata, an emerging fungal pathogen, exhibits superior relative cell surface hydrophobicity and adhesion to denture acrylic surfaces compared with Candida albicans. APMIS. 2002;110:601–610. doi: 10.1034/j.1600-0463.2002.1100902.x. PubMed DOI
Lopez D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harb. Perspect Biol. 2010;2:a000398. doi: 10.1101/cshperspect.a000398. PubMed DOI PMC
Araujo D, Henriques M, Silva S. Portrait of Candida species biofilm regulatory network genes. Trend. Microbiol. 2017;25:62–75. doi: 10.1016/j.tim.2016.09.004. PubMed DOI
Rodrigues CF, Rodrigues ME, Silva S, Henriques M. J. Fungi (Basel) 2017. Candida glabrata biofilms: How far have Wwe come? p. jof3010011. PubMed PMC
Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119–128. doi: 10.4161/viru.22913. PubMed DOI PMC
Almeida RS, Wilson D, Hube B. Candida albicans iron acquisition within the host. FEMS Yeast Res. 2009;9:1000–1012. doi: 10.1111/j.1567-1364.2009.00570.x. PubMed DOI
Citiulo, F. et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathogens8, ARTN e1002777 (2012). PubMed PMC
Ene IV, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 2012;14:1319–1335. doi: 10.1111/j.1462-5822.2012.01813.x. PubMed DOI PMC
Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol. 2012;10:525–537. doi: 10.1038/nrmicro2836. PubMed DOI PMC
Arino J, Ramos J, Sychrova H. Alkali metal cation transport and homeostasis in yeasts. Microbiol. Mol. Biol. Reviews. 2010;74:95–120. doi: 10.1128/MMBR.00042-09. PubMed DOI PMC
Arino, J., Ramos, J. & Sychrova, H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast, 10.1002/yea.3355 (2018). PubMed
Ramos J, Arino J, Sychrova H. Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol. Lett. 2011;317:1–8. doi: 10.1111/j.1574-6968.2011.02214.x. PubMed DOI
Rodriguez-Navarro A, Benito B. Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase. Biochim. Biophys. Acta. 2010;1798:1841–1853. doi: 10.1016/j.bbamem.2010.07.009. PubMed DOI
Husekova B, Elicharova H, Sychrova H. Pathogenic Candida species differ in the ability to grow at limiting potassium concentrations. Canad. J. Microbiol. 2016;62:394–401. doi: 10.1139/cjm-2015-0766. PubMed DOI
Elicharova H, Husekova B, Sychrova H. Three Candida albicans potassium uptake systems differ in their ability to provide Saccharomyces cerevisiae trk1trk2 mutants with necessary potassium. FEMS Yeast Res. 2016;16:fow039. doi: 10.1093/femsyr/fow039. PubMed DOI
Watanabe H, Azuma M, Igarashi K, Ooshima H. Relationship between cell morphology and intracellular potassium concentration in Candida albicans. J. Antibiot. (Tokyo) 2006;59:281–287. doi: 10.1038/ja.2006.39. PubMed DOI
Navarrete C, et al. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res. 2010;10:508–517. PubMed
Petrezselyova S, Ramos J, Sychrova H. Trk2 transporter is a relevant player in K+ supply and plasma-membrane potential control in Saccharomyces cerevisiae. Folia Microbiol. (Praha) 2011;56:23–28. doi: 10.1007/s12223-011-0009-1. PubMed DOI
Llopis-Torregrosa V, Husekova B, Sychrova H. Potassium uptake mediated by Trk1 is crucial for Candida glabrata growth and fitness. PLoS One. 2016;11:e0153374. doi: 10.1371/journal.pone.0153374. PubMed DOI PMC
Krauke Y, Sychrova H. Cnh1 Na+/H+ antiporter and Ena1 Na+-ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata. FEMS Yeast Res. 2011;11:29–41. doi: 10.1111/j.1567-1364.2010.00686.x. PubMed DOI
Silva S, et al. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011;19:241–247. doi: 10.1016/j.tim.2011.02.003. PubMed DOI
Binder U, Maurer E, Lass-Florl C. Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. Fung. Biol. 2016;120:288–295. doi: 10.1016/j.funbio.2015.06.002. PubMed DOI
Borman AM. Of mice and men and larvae: Galleria mellonella to model the early host-pathogen interactions after fungal infection. Virulence. 2018;9:9–12. doi: 10.1080/21505594.2017.1382799. PubMed DOI PMC
Brunke S, et al. Of mice, flies - and men? Comparing fungal infection models for large-scale screening efforts. Dis. Mod. Mechan. 2015;8:473–486. doi: 10.1242/dmm.019901. PubMed DOI PMC
Clemmons, A. W., Lindsay, S. A. & Wasserman, S. A. An effector peptide family required for Drosophila Toll-mediated immunity. PLoS Pathog. 11, doi:ARTN e1004876 (2015). PubMed PMC
Horng T, Medzhitov R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl. Acad. Sc.i USA. 2001;98:12654–12658. doi: 10.1073/pnas.231471798. PubMed DOI PMC
Kloezen W, van Helvert-van Poppel M, Fahal AH, van de Sande WW. A Madurella mycetomatis grain model in Galleria mellonella larvae. PLoS Negl. Trop. Dis. 2015;9:e0003926. doi: 10.1371/journal.pntd.0003926. PubMed DOI PMC
Bourgeois C, Majer O, Frohner IE, Tierney L, Kuchler K. Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Curr. Opin. Microbiol. 2010;13:401–408. doi: 10.1016/j.mib.2010.05.004. PubMed DOI
Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res. 2015;15:fov042. doi: 10.1093/femsyr/fov042. PubMed DOI
Marcil A, Harcus D, Thomas DY, Whiteway M. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment. Infect. Immun. 2002;70:6319–6329. doi: 10.1128/IAI.70.11.6319-6329.2002. PubMed DOI PMC
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. doi: 10.3389/fimmu.2014.00491. PubMed DOI PMC
Seider K, et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J. Immunol. 2011;187:3072–3086. doi: 10.4049/jimmunol.1003730. PubMed DOI
Jacobsen ID, et al. Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect. Immun. 2010;78:1066–1077. doi: 10.1128/IAI.01244-09. PubMed DOI PMC
Kasper L, et al. Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages. PLoS One. 2014;9:e96015. doi: 10.1371/journal.pone.0096015. PubMed DOI PMC
Skaar EP, Raffatellu M. Metals in infectious diseases and nutritional immunity. Metallomics. 2015;7:926–928. doi: 10.1039/C5MT90021B. PubMed DOI
Van Raamsdonk M, Vandermei HC, Desoet JJ, Busscher HJ, Degraaff J. Effect of polyclonal and monoclonal-antibodies on surface-properties of Streptococcus-Sobrinus. Infect. Immun. 1995;63:1698–1702. PubMed PMC
Li XG, Yan Z, Xu JP. Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology-SGM. 2003;149:353–362. doi: 10.1099/mic.0.25932-0. PubMed DOI
Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat. Immunol. 2002;3:91–97. doi: 10.1038/ni747. PubMed DOI