DoE Approach to Setting Input Parameters for Digital 3D Printing of Concrete for Coarse Aggregates up to 8 mm

. 2023 Apr 27 ; 16 (9) : . [epub] 20230427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37176300

Grantová podpora
FSI-S-23-8340 Brno University of Technology
FAST-S-23-8318 Brno University of Technology
CK03000240 Czech Technology Grant Agency

This paper is primarily concerned with determining and assessing the properties of a cement-based composite material containing large particles of aggregate in digital manufacturing. The motivation is that mixtures with larger aggregate sizes offer benefits such as increased resistance to cracking, savings in other material components (such as Portland cement), and ultimately cost savings. Consequently, in the context of 3D Construction/Concrete Print technology (3DCP), these materials are environmentally friendly, unlike the fine-grained mixtures previously utilized. Prior to printing, these limits must be established within the virtual environment's process parameters in order to reduce the amount of waste produced. This study extends the existing research in the field of large-scale 3DCP by employing coarse aggregate (crushed coarse river stone) with a maximum particle size of 8 mm. The research focuses on inverse material characterization, with the primary goal of determining the optimal combination of three monitored process parameters-print speed, extrusion height, and extrusion width-that will maximize buildability. Design Of Experiment was used to cover all possible variations and reduce the number of required simulations. In particular, the Box-Behnken method was used for three factors and a central point. As a result, thirteen combinations of process parameters covering the area of interest were determined. Thirteen numerical simulations were conducted using the Abaqus software, and the outcomes were discussed.

Zobrazit více v PubMed

Agustí-Juan I., Müller F., Hack N., Wangler T., Habert G. Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. J. Clean. Prod. 2017;154:330–340. doi: 10.1016/j.jclepro.2017.04.002. DOI

United Nations Environment Programme Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector. 2019 Global Status Report. 2019. [(accessed on 28 September 2021)]. Available online: https://www.unep.org/resources/publication/2019-global-status-report-buildings-and-construction-sector.

Buswell R.A., De Silva W.R.L., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018;112:37–49. doi: 10.1016/j.cemconres.2018.05.006. DOI

du Plessis A., Babafemi A.J., Paul S.C., Panda B., Tran J.P., Broeckhoven C. Biomimicry for 3D concrete printing: A review and perspective. Addit. Manuf. 2021;38:101823. doi: 10.1016/j.addma.2020.101823. DOI

Lim S., Buswell R., Le T., Austin S., Gibb A., Thorpe T. Developments in construction-scale additive manufacturing processes. Autom. Constr. 2012;21:262–268. doi: 10.1016/j.autcon.2011.06.010. DOI

De Schutter G., Lesage K., Mechtcherine V., Nerella V.N., Habert G., Agusti-Juan I. Vision of 3D printing with concrete—Technical, economic and environmental potentials. Cem. Concr. Res. 2018;112:25–36. doi: 10.1016/j.cemconres.2018.06.001. DOI

Vespalec A., Podroužek J., Boštík J., Míča L., Koutný D. An experimental study on time dependent behaviour of coarse aggregate concrete mixture for 3D Construction Printing. Construction and Building materials. Constr. Build. Mater. 2023;376:130999. doi: 10.1016/j.conbuildmat.2023.130999. DOI

Khan M.S., Sanchez F., Zhou H. 3-D printing of concrete: Beyond horizons. Cem. Concr. Res. 2020;133:106070. doi: 10.1016/j.cemconres.2020.106070. DOI

Zhu B., Pan J., Nematollahi B., Zhou Z., Zhang Y., Sanjayan J. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater. Des. 2019;181:108088. doi: 10.1016/j.matdes.2019.108088. DOI

Souza M.T., Ferreira I.M., de Moraes E.G., Senff L., de Oliveira A.P.N. 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J. Build. Eng. 2020;32:101833. doi: 10.1016/j.jobe.2020.101833. DOI

Duballet R., Baverel O., Dirrenberger J. Classification of building systems for concrete 3D printing. Autom. Constr. 2017;83:247–258. doi: 10.1016/j.autcon.2017.08.018. DOI

Fernandes G., Feitosa L. Impact of Contour Crafting on Civil Engineering. Int. J. Eng. Res. Technol. IJERT. 2015;4:628–632.

Meurer M., Classen M. Mechanical Properties of Hardened 3D Printed Concretes and Mortars—Development of a Consistent Experimental Characterization Strategy. Materials. 2021;14:752. doi: 10.3390/ma14040752. PubMed DOI PMC

3D Concrete Printing. [(accessed on 1 February 2021)]. Available online: https://www.ice.cz/en/ice-coral.

Vespalec A., Novák J., Kohoutková A., Vosynek P., Podroužek J., Škaroupka D., Zikmund T., Kaiser J., Paloušek D. Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing. Materials. 2020;13:5147. doi: 10.3390/ma13225147. PubMed DOI PMC

Mechtcherine V., Nerella V.N., Will F., Näther M., Otto J., Krause M. On-site, large-scale, monolithic 3D concrete printing. Construction Printing Technology. Constr. Print. Technol. 2020;2:14–22.

Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J. Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials. 2019;16:902. doi: 10.3390/ma12060902. PubMed DOI PMC

Panda B., Tan M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 2018;44:10258–10265. doi: 10.1016/j.ceramint.2018.03.031. DOI

Dey D., Srinivas D., Panda B., Suraneni P., Sitharam T. Use of industrial waste materials for 3D printing of sustainable concrete: A review. J. Clean. Prod. 2022;340:130749. doi: 10.1016/j.jclepro.2022.130749. DOI

Watari T., Cao Z., Hata S., Nansai K. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 2022;13:4158. doi: 10.1038/s41467-022-31806-2. PubMed DOI PMC

Panda B., Unluer C., Tan M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Compos. 2018;94:307–314. doi: 10.1016/j.cemconcomp.2018.10.002. DOI

Chen Y., Veer F., Copuroglu O. A critical review of 3D concrete printing as a low CO2 concrete approach. Heron. 2017;62:167–194. doi: 10.13140/rg.2.2.12323.71205. DOI

Wang D., Zhu J., He F. CO2 carbonation-induced improvement in strength and microstructure of reactive MgO-CaO-fly ash-solidified soils. Constr. Build. Mater. 2019;229:116914. doi: 10.1016/j.conbuildmat.2019.116914. DOI

Vantyghem G., Ticho O., Wouter D.C. FEM modelling techniques for simulation of 3D concrete printing. arXiv. 2020 doi: 10.48550/arXiv.2009.06907.2009.06907 DOI

Mai I., Brohmann L., Freund N., Gantner S., Kloft H., Lowke D., Hack N. Large Particle 3D Concrete Printing—A Green and Viable Solution. Materials. 2021;14:6125. doi: 10.3390/ma14206125. PubMed DOI PMC

Carneau P., Mesnil R., Roussel N., Baverel O. Additive manufacturing of cantilever-From masonry to concrete 3D printing. Autom. Constr. 2020;116:103184. doi: 10.1016/j.autcon.2020.103184. DOI

Vantyghem G., Ooms T., De Corte W. VoxelPrint: A Grasshopper plug-in for voxel-based numerical simulation of concrete printing. Autom. Constr. 2021;122:103469. doi: 10.1016/j.autcon.2020.103469. DOI

Chang Z., Liang M., Xu Y., Schlangen E., Šavija B. 3D concrete printing: Lattice modeling of structural failure considering damage and deformed geometry. Cem. Concr. Compos. 2022;133:104719. doi: 10.1016/j.cemconcomp.2022.104719. DOI

Khan S.A., Koç M. Buildability Analysis of 3D Concrete Printing Process: A Parametric Study Using Design of Experiment Approach. Processes. 2023;11:782. doi: 10.3390/pr11030782. DOI

Suiker A., Wolfs R., Lucas S., Salet T. Elastic buckling and plastic collapse during 3D concrete printing. Cem. Concr. Res. 2020;135:106016. doi: 10.1016/j.cemconres.2020.106016. DOI

Wolfs R.J.M., Bos F.P., Salet T.A.M. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cem. Concr. Compos. 2019;104:103344. doi: 10.1016/j.cemconcomp.2019.103344. DOI

Bin Ishak I., Fisher J., Larochelle P. Proceedings of the ASME Design Engineering Technical Conference. American Society of Mechanical Engineers; Charlotte, NC, USA: 2016. Robot Arm Platform for Additive Manufacturing Using Multi-Plane Toolpaths; pp. 1–7. DOI

Izard J.-B., Dubor A., Hervé P.-E., Cabay E., Culla D., Rodriguez M., Barrado M. Large-scale 3D printing with cable-driven parallel robots. Constr. Robot. 2017;1:69–76. doi: 10.1007/s41693-017-0008-0. DOI

Schuldt S.J., Jagoda J.A., Hoisington A.J., Delorit J.D. A systematic review and analysis of the viability of 3D-printed construction in remote environments. Autom. Constr. 2021;125:103642. doi: 10.1016/j.autcon.2021.103642. DOI

Zareiyan B., Khoshnevis B. Interlayer adhesion and strength of structures in Contour Crafting-Effects of aggregate size, extrusion rate, and layer thickness. Autom. Constr. 2017;81:112–121. doi: 10.1016/j.autcon.2017.06.013. DOI

He L., Tan J.Z.M., Chow W.T., Li H., Pan J. Design of novel nozzles for higher interlayer strength of 3D printed cement paste. Addit. Manuf. 2021;48:102452. doi: 10.1016/j.addma.2021.102452. DOI

Wolfs R.J.M., Bos F.P., Salet T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem. Concr. Res. 2018;106:103–116. doi: 10.1016/j.cemconres.2018.02.001. DOI

Bester F. Benchmark Structures for 3D Printing of Concrete. 2018. [(accessed on 22 October 2018)]. Available online: https://www.researchgate.net/publication/329365788_Benchmark_Structures_for_3D_printing_of_Concrete.

Mohan M.K., Rahul A., De Schutter G., Van Tittelboom K. Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cem. Concr. Compos. 2021;115:103855. doi: 10.1016/j.cemconcomp.2020.103855. DOI

Kruger J., Zeranka S., van Zijl G. 3D concrete printing: A lower bound analytical model for buildability performance quantification. Autom. Constr. 2019;106:102904. doi: 10.1016/j.autcon.2019.102904. DOI

Chen Y., Figueiredo S.C., Yalçinkaya Ç., Çopuroğlu O., Veer F., Schlangen E. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing. Materials. 2019;12:1374. doi: 10.3390/ma12091374. PubMed DOI PMC

Suiker A. Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. Int. J. Mech. Sci. 2018;137:145–170. doi: 10.1016/j.ijmecsci.2018.01.010. DOI

Bos F., Wolfs R., Ahmed Z., Salet T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototyp. 2016;11:209–225. doi: 10.1080/17452759.2016.1209867. DOI

Chang Z., Xu Y., Chen Y., Gan Y., Schlangen E., Šavija B. A discrete lattice model for assessment of buildability performance of 3D-printed concrete. Comput. Civ. Infrastruct. Eng. 2021;36:638–655. doi: 10.1111/mice.12700. DOI

Hambach M., Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cem. Concr. Compos. 2017;79:62–70. doi: 10.1016/j.cemconcomp.2017.02.001. DOI

Nerella V.N., Hempel S., Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr. Build. Mater. 2019;205:586–601. doi: 10.1016/j.conbuildmat.2019.01.235. DOI

Wolfs R.J.M., Suiker A.S.J. Structural failure during extrusion-based 3D printing processes. Int. J. Adv. Manuf. Technol. 2019;104:565–584. doi: 10.1007/s00170-019-03844-6. DOI

Guamán-Rivera R., Martínez-Rocamora A., García-Alvarado R., Muñoz-Sanguinetti C., González-Böhme L.F., Auat-Cheein F. Recent Developments and Challenges of 3D-Printed Construction: A Review of Research Fronts. Buildings. 2022;12:229. doi: 10.3390/buildings12020229. DOI

Podroužek J., Marcon M., Ninčević K., Wan-Wendner R. Bio-Inspired 3D Infill Patterns for Additive Manufacturing and Structural Applications. Materials. 2019;12:499. doi: 10.3390/ma12030499. PubMed DOI PMC

Krčma M., Paloušek D. Comparison of the effects of multiaxis printing strategies on large-scale 3D printed surface quality, accuracy, and strength. Int. J. Adv. Manuf. Technol. 2022;119:7109–7120. doi: 10.1007/s00170-022-08685-4. DOI

Xu W., Huang S., Han D., Zhang Z., Gao Y., Feng P., Zhang D. Case Studies in Construction Materials Toward automated construction: The design-to-printing workflow for a robotic in-situ 3D printed house. Case Stud. Constr. Mater. 2022;17:e01442.

Ooms T., Vantyghem G., Van Coile R., De Corte W. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries. Addit. Manuf. 2021;38:101743. doi: 10.1016/j.addma.2020.101743. DOI

Pan T., Teng H., Liao H., Jiang Y., Qian C., Wang Y. Effect of shaping plate apparatus on mechanical properties of 3D printed cement-based materials: Experimental and numerical studies. Cem. Concr. Res. 2022;155:106785. doi: 10.1016/j.cemconres.2022.106785. DOI

WOLFS R.J.M. 3D Printing of Concrete Structures. Thesis of Eindhoven Univaersity of Technology 2015, 110. [(accessed on 1 February 2015)]. Available online: https://research.tue.nl/en/studentTheses/3d-printing-of-concrete-structures.

Roussel N. Rheological requirements for printable concretes. Cem. Concr. Res. 2018;112:76–85. doi: 10.1016/j.cemconres.2018.04.005. DOI

Pelli D.G., Burns C.W., Farell B., Moore-Page D.C. Feature detection and letter identification. Vis. Res. 2006;46:4646–4674. doi: 10.1016/j.visres.2006.04.023. PubMed DOI

Attneave F., Arnoult M.D. The quantitative study of shape and pattern perception. Psychol. Bull. 1956;53:452–471. doi: 10.1037/h0044049. PubMed DOI

Zhang J.-Y., Liu L., Yu C. Legibility variations of Chinese characters and implications for visual acuity measurement in Chinese reading population. Investig. Ophthalmol. Vis. Sci. 2007;48:2383–2390. doi: 10.1167/iovs.06-1195. PubMed DOI

Rusu A., Govindaraju V. The Influence of Image Complexity on Handwriting Recognition. October 2006. [(accessed on 26 August 2015)]. Available online: https://www.researchgate.net/publication/252503942_The_Influence_of_Image_Complexity_on_Handwriting_Recognition.

Antony J. Design of Experiments for Engineers and Scientists. Elsevier; Amsterdam, The Netherlands: 2014.

LORENZEN T., Anderson V. Design of Experiments [online] 1st ed. CRC Press; New York, NY, USA: 1993. DOI

Craveiro F., Bartolo H., Gale A., Duarte J., Bartolo P. A design tool for resource-efficient fabrication of 3d-graded structural building components using additive manufacturing. Autom. Constr. 2017;82:75–83. doi: 10.1016/j.autcon.2017.05.006. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...