DoE Approach to Setting Input Parameters for Digital 3D Printing of Concrete for Coarse Aggregates up to 8 mm
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FSI-S-23-8340
Brno University of Technology
FAST-S-23-8318
Brno University of Technology
CK03000240
Czech Technology Grant Agency
PubMed
37176300
PubMed Central
PMC10179870
DOI
10.3390/ma16093418
PII: ma16093418
Knihovny.cz E-zdroje
- Klíčová slova
- 3DCP, cementitious material, coarse aggregate concrete printing, contour crafting, digital manufacturing, inverse material characterisation, large-scale additive manufacturing,
- Publikační typ
- časopisecké články MeSH
This paper is primarily concerned with determining and assessing the properties of a cement-based composite material containing large particles of aggregate in digital manufacturing. The motivation is that mixtures with larger aggregate sizes offer benefits such as increased resistance to cracking, savings in other material components (such as Portland cement), and ultimately cost savings. Consequently, in the context of 3D Construction/Concrete Print technology (3DCP), these materials are environmentally friendly, unlike the fine-grained mixtures previously utilized. Prior to printing, these limits must be established within the virtual environment's process parameters in order to reduce the amount of waste produced. This study extends the existing research in the field of large-scale 3DCP by employing coarse aggregate (crushed coarse river stone) with a maximum particle size of 8 mm. The research focuses on inverse material characterization, with the primary goal of determining the optimal combination of three monitored process parameters-print speed, extrusion height, and extrusion width-that will maximize buildability. Design Of Experiment was used to cover all possible variations and reduce the number of required simulations. In particular, the Box-Behnken method was used for three factors and a central point. As a result, thirteen combinations of process parameters covering the area of interest were determined. Thirteen numerical simulations were conducted using the Abaqus software, and the outcomes were discussed.
Zobrazit více v PubMed
Agustí-Juan I., Müller F., Hack N., Wangler T., Habert G. Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. J. Clean. Prod. 2017;154:330–340. doi: 10.1016/j.jclepro.2017.04.002. DOI
United Nations Environment Programme Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector. 2019 Global Status Report. 2019. [(accessed on 28 September 2021)]. Available online: https://www.unep.org/resources/publication/2019-global-status-report-buildings-and-construction-sector.
Buswell R.A., De Silva W.R.L., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018;112:37–49. doi: 10.1016/j.cemconres.2018.05.006. DOI
du Plessis A., Babafemi A.J., Paul S.C., Panda B., Tran J.P., Broeckhoven C. Biomimicry for 3D concrete printing: A review and perspective. Addit. Manuf. 2021;38:101823. doi: 10.1016/j.addma.2020.101823. DOI
Lim S., Buswell R., Le T., Austin S., Gibb A., Thorpe T. Developments in construction-scale additive manufacturing processes. Autom. Constr. 2012;21:262–268. doi: 10.1016/j.autcon.2011.06.010. DOI
De Schutter G., Lesage K., Mechtcherine V., Nerella V.N., Habert G., Agusti-Juan I. Vision of 3D printing with concrete—Technical, economic and environmental potentials. Cem. Concr. Res. 2018;112:25–36. doi: 10.1016/j.cemconres.2018.06.001. DOI
Vespalec A., Podroužek J., Boštík J., Míča L., Koutný D. An experimental study on time dependent behaviour of coarse aggregate concrete mixture for 3D Construction Printing. Construction and Building materials. Constr. Build. Mater. 2023;376:130999. doi: 10.1016/j.conbuildmat.2023.130999. DOI
Khan M.S., Sanchez F., Zhou H. 3-D printing of concrete: Beyond horizons. Cem. Concr. Res. 2020;133:106070. doi: 10.1016/j.cemconres.2020.106070. DOI
Zhu B., Pan J., Nematollahi B., Zhou Z., Zhang Y., Sanjayan J. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater. Des. 2019;181:108088. doi: 10.1016/j.matdes.2019.108088. DOI
Souza M.T., Ferreira I.M., de Moraes E.G., Senff L., de Oliveira A.P.N. 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J. Build. Eng. 2020;32:101833. doi: 10.1016/j.jobe.2020.101833. DOI
Duballet R., Baverel O., Dirrenberger J. Classification of building systems for concrete 3D printing. Autom. Constr. 2017;83:247–258. doi: 10.1016/j.autcon.2017.08.018. DOI
Fernandes G., Feitosa L. Impact of Contour Crafting on Civil Engineering. Int. J. Eng. Res. Technol. IJERT. 2015;4:628–632.
Meurer M., Classen M. Mechanical Properties of Hardened 3D Printed Concretes and Mortars—Development of a Consistent Experimental Characterization Strategy. Materials. 2021;14:752. doi: 10.3390/ma14040752. PubMed DOI PMC
3D Concrete Printing. [(accessed on 1 February 2021)]. Available online: https://www.ice.cz/en/ice-coral.
Vespalec A., Novák J., Kohoutková A., Vosynek P., Podroužek J., Škaroupka D., Zikmund T., Kaiser J., Paloušek D. Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing. Materials. 2020;13:5147. doi: 10.3390/ma13225147. PubMed DOI PMC
Mechtcherine V., Nerella V.N., Will F., Näther M., Otto J., Krause M. On-site, large-scale, monolithic 3D concrete printing. Construction Printing Technology. Constr. Print. Technol. 2020;2:14–22.
Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J. Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials. 2019;16:902. doi: 10.3390/ma12060902. PubMed DOI PMC
Panda B., Tan M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 2018;44:10258–10265. doi: 10.1016/j.ceramint.2018.03.031. DOI
Dey D., Srinivas D., Panda B., Suraneni P., Sitharam T. Use of industrial waste materials for 3D printing of sustainable concrete: A review. J. Clean. Prod. 2022;340:130749. doi: 10.1016/j.jclepro.2022.130749. DOI
Watari T., Cao Z., Hata S., Nansai K. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 2022;13:4158. doi: 10.1038/s41467-022-31806-2. PubMed DOI PMC
Panda B., Unluer C., Tan M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Compos. 2018;94:307–314. doi: 10.1016/j.cemconcomp.2018.10.002. DOI
Chen Y., Veer F., Copuroglu O. A critical review of 3D concrete printing as a low CO2 concrete approach. Heron. 2017;62:167–194. doi: 10.13140/rg.2.2.12323.71205. DOI
Wang D., Zhu J., He F. CO2 carbonation-induced improvement in strength and microstructure of reactive MgO-CaO-fly ash-solidified soils. Constr. Build. Mater. 2019;229:116914. doi: 10.1016/j.conbuildmat.2019.116914. DOI
Vantyghem G., Ticho O., Wouter D.C. FEM modelling techniques for simulation of 3D concrete printing. arXiv. 2020 doi: 10.48550/arXiv.2009.06907.2009.06907 DOI
Mai I., Brohmann L., Freund N., Gantner S., Kloft H., Lowke D., Hack N. Large Particle 3D Concrete Printing—A Green and Viable Solution. Materials. 2021;14:6125. doi: 10.3390/ma14206125. PubMed DOI PMC
Carneau P., Mesnil R., Roussel N., Baverel O. Additive manufacturing of cantilever-From masonry to concrete 3D printing. Autom. Constr. 2020;116:103184. doi: 10.1016/j.autcon.2020.103184. DOI
Vantyghem G., Ooms T., De Corte W. VoxelPrint: A Grasshopper plug-in for voxel-based numerical simulation of concrete printing. Autom. Constr. 2021;122:103469. doi: 10.1016/j.autcon.2020.103469. DOI
Chang Z., Liang M., Xu Y., Schlangen E., Šavija B. 3D concrete printing: Lattice modeling of structural failure considering damage and deformed geometry. Cem. Concr. Compos. 2022;133:104719. doi: 10.1016/j.cemconcomp.2022.104719. DOI
Khan S.A., Koç M. Buildability Analysis of 3D Concrete Printing Process: A Parametric Study Using Design of Experiment Approach. Processes. 2023;11:782. doi: 10.3390/pr11030782. DOI
Suiker A., Wolfs R., Lucas S., Salet T. Elastic buckling and plastic collapse during 3D concrete printing. Cem. Concr. Res. 2020;135:106016. doi: 10.1016/j.cemconres.2020.106016. DOI
Wolfs R.J.M., Bos F.P., Salet T.A.M. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cem. Concr. Compos. 2019;104:103344. doi: 10.1016/j.cemconcomp.2019.103344. DOI
Bin Ishak I., Fisher J., Larochelle P. Proceedings of the ASME Design Engineering Technical Conference. American Society of Mechanical Engineers; Charlotte, NC, USA: 2016. Robot Arm Platform for Additive Manufacturing Using Multi-Plane Toolpaths; pp. 1–7. DOI
Izard J.-B., Dubor A., Hervé P.-E., Cabay E., Culla D., Rodriguez M., Barrado M. Large-scale 3D printing with cable-driven parallel robots. Constr. Robot. 2017;1:69–76. doi: 10.1007/s41693-017-0008-0. DOI
Schuldt S.J., Jagoda J.A., Hoisington A.J., Delorit J.D. A systematic review and analysis of the viability of 3D-printed construction in remote environments. Autom. Constr. 2021;125:103642. doi: 10.1016/j.autcon.2021.103642. DOI
Zareiyan B., Khoshnevis B. Interlayer adhesion and strength of structures in Contour Crafting-Effects of aggregate size, extrusion rate, and layer thickness. Autom. Constr. 2017;81:112–121. doi: 10.1016/j.autcon.2017.06.013. DOI
He L., Tan J.Z.M., Chow W.T., Li H., Pan J. Design of novel nozzles for higher interlayer strength of 3D printed cement paste. Addit. Manuf. 2021;48:102452. doi: 10.1016/j.addma.2021.102452. DOI
Wolfs R.J.M., Bos F.P., Salet T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem. Concr. Res. 2018;106:103–116. doi: 10.1016/j.cemconres.2018.02.001. DOI
Bester F. Benchmark Structures for 3D Printing of Concrete. 2018. [(accessed on 22 October 2018)]. Available online: https://www.researchgate.net/publication/329365788_Benchmark_Structures_for_3D_printing_of_Concrete.
Mohan M.K., Rahul A., De Schutter G., Van Tittelboom K. Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cem. Concr. Compos. 2021;115:103855. doi: 10.1016/j.cemconcomp.2020.103855. DOI
Kruger J., Zeranka S., van Zijl G. 3D concrete printing: A lower bound analytical model for buildability performance quantification. Autom. Constr. 2019;106:102904. doi: 10.1016/j.autcon.2019.102904. DOI
Chen Y., Figueiredo S.C., Yalçinkaya Ç., Çopuroğlu O., Veer F., Schlangen E. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing. Materials. 2019;12:1374. doi: 10.3390/ma12091374. PubMed DOI PMC
Suiker A. Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. Int. J. Mech. Sci. 2018;137:145–170. doi: 10.1016/j.ijmecsci.2018.01.010. DOI
Bos F., Wolfs R., Ahmed Z., Salet T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototyp. 2016;11:209–225. doi: 10.1080/17452759.2016.1209867. DOI
Chang Z., Xu Y., Chen Y., Gan Y., Schlangen E., Šavija B. A discrete lattice model for assessment of buildability performance of 3D-printed concrete. Comput. Civ. Infrastruct. Eng. 2021;36:638–655. doi: 10.1111/mice.12700. DOI
Hambach M., Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cem. Concr. Compos. 2017;79:62–70. doi: 10.1016/j.cemconcomp.2017.02.001. DOI
Nerella V.N., Hempel S., Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr. Build. Mater. 2019;205:586–601. doi: 10.1016/j.conbuildmat.2019.01.235. DOI
Wolfs R.J.M., Suiker A.S.J. Structural failure during extrusion-based 3D printing processes. Int. J. Adv. Manuf. Technol. 2019;104:565–584. doi: 10.1007/s00170-019-03844-6. DOI
Guamán-Rivera R., Martínez-Rocamora A., García-Alvarado R., Muñoz-Sanguinetti C., González-Böhme L.F., Auat-Cheein F. Recent Developments and Challenges of 3D-Printed Construction: A Review of Research Fronts. Buildings. 2022;12:229. doi: 10.3390/buildings12020229. DOI
Podroužek J., Marcon M., Ninčević K., Wan-Wendner R. Bio-Inspired 3D Infill Patterns for Additive Manufacturing and Structural Applications. Materials. 2019;12:499. doi: 10.3390/ma12030499. PubMed DOI PMC
Krčma M., Paloušek D. Comparison of the effects of multiaxis printing strategies on large-scale 3D printed surface quality, accuracy, and strength. Int. J. Adv. Manuf. Technol. 2022;119:7109–7120. doi: 10.1007/s00170-022-08685-4. DOI
Xu W., Huang S., Han D., Zhang Z., Gao Y., Feng P., Zhang D. Case Studies in Construction Materials Toward automated construction: The design-to-printing workflow for a robotic in-situ 3D printed house. Case Stud. Constr. Mater. 2022;17:e01442.
Ooms T., Vantyghem G., Van Coile R., De Corte W. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries. Addit. Manuf. 2021;38:101743. doi: 10.1016/j.addma.2020.101743. DOI
Pan T., Teng H., Liao H., Jiang Y., Qian C., Wang Y. Effect of shaping plate apparatus on mechanical properties of 3D printed cement-based materials: Experimental and numerical studies. Cem. Concr. Res. 2022;155:106785. doi: 10.1016/j.cemconres.2022.106785. DOI
WOLFS R.J.M. 3D Printing of Concrete Structures. Thesis of Eindhoven Univaersity of Technology 2015, 110. [(accessed on 1 February 2015)]. Available online: https://research.tue.nl/en/studentTheses/3d-printing-of-concrete-structures.
Roussel N. Rheological requirements for printable concretes. Cem. Concr. Res. 2018;112:76–85. doi: 10.1016/j.cemconres.2018.04.005. DOI
Pelli D.G., Burns C.W., Farell B., Moore-Page D.C. Feature detection and letter identification. Vis. Res. 2006;46:4646–4674. doi: 10.1016/j.visres.2006.04.023. PubMed DOI
Attneave F., Arnoult M.D. The quantitative study of shape and pattern perception. Psychol. Bull. 1956;53:452–471. doi: 10.1037/h0044049. PubMed DOI
Zhang J.-Y., Liu L., Yu C. Legibility variations of Chinese characters and implications for visual acuity measurement in Chinese reading population. Investig. Ophthalmol. Vis. Sci. 2007;48:2383–2390. doi: 10.1167/iovs.06-1195. PubMed DOI
Rusu A., Govindaraju V. The Influence of Image Complexity on Handwriting Recognition. October 2006. [(accessed on 26 August 2015)]. Available online: https://www.researchgate.net/publication/252503942_The_Influence_of_Image_Complexity_on_Handwriting_Recognition.
Antony J. Design of Experiments for Engineers and Scientists. Elsevier; Amsterdam, The Netherlands: 2014.
LORENZEN T., Anderson V. Design of Experiments [online] 1st ed. CRC Press; New York, NY, USA: 1993. DOI
Craveiro F., Bartolo H., Gale A., Duarte J., Bartolo P. A design tool for resource-efficient fabrication of 3d-graded structural building components using additive manufacturing. Autom. Constr. 2017;82:75–83. doi: 10.1016/j.autcon.2017.05.006. DOI