Ultrafast Infrared Laser Crystallization of Amorphous Si/Ge Multilayer Structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000445
European Regional Development Fund and the state budget of the Czech Republic
SGS23/188/OHK4/3T/14
Grant Agency of the Czech Technical University in Prague
Grant FSUS-2020-0029 and Program FFNN-2022-0018
Ministry of Science and Higher Education of the Russian Federation
PubMed
37176457
PubMed Central
PMC10180334
DOI
10.3390/ma16093572
PII: ma16093572
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, defect accumulation, laser-induced stresses, selective crystallization, silicon–germanium multilayer structures, thin films, ultrashort infrared laser annealing,
- Publikační typ
- časopisecké články MeSH
Silicon-germanium multilayer structures consisting of alternating Si and Ge amorphous nanolayers were annealed by ultrashort laser pulses at near-infrared (1030 nm) and mid-infrared (1500 nm) wavelengths. In this paper, we investigate the effects of the type of substrate (Si or glass), and the number of laser pulses (single-shot and multi-shot regimes) on the crystallization of the layers. Based on structural Raman spectroscopy analysis, several annealing regimes were revealed depending on laser fluence, including partial or complete crystallization of the components and formation of solid Si-Ge alloys. Conditions for selective crystallization of germanium when Si remains amorphous and there is no intermixing between the Si and Ge layers were found. Femtosecond mid-IR laser annealing appeared to be particularly favorable for such selective crystallization. Similar crystallization regimes were observed for both single-shot and multi-shot conditions, although at lower fluences and with a lower selectivity in the latter case. A theoretical analysis was carried out based on the laser energy absorption mechanisms, thermal stresses, and non-thermal effects.
Coherent LaserSystems GmbH and Co KG Hans Boeckler Str 12 37079 Göttingen Germany
Physics Department Novosibirsk State University Pirogova Street 2 Novosibirsk 630090 Russia
Zobrazit více v PubMed
Akl A.A., Howari H.J. Nanocrystalline Formation and Optical Properties of Germanium Thin Films Prepared by Physical Vapor Deposition. Phys. Chem. Solids. 2009;70:1337–1343. doi: 10.1016/j.jpcs.2009.07.016. DOI
Socol M., Preda N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. Nanomaterials. 2021;11:1117. doi: 10.3390/nano11051117. PubMed DOI PMC
Korkut C., Çınar K., Kabaçelik İ., Turan R., Kulakcı M., Bek A. Laser Crystallization of Amorphous Ge Thin Films via a Nanosecond Pulsed Infrared Laser. Cryst. Growth Des. 2021;21:4632–4639. doi: 10.1021/acs.cgd.1c00470. DOI
Andrei F., Andrei A., Birjega R., Sirjita E.N., Radu A.I., Dinescu M., Ion V., Maraloiu V.-A., Teodorescu V.Ş., Scarisoreanu N.D. The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency. Nanomaterials. 2021;11:110. doi: 10.3390/nano11010110. PubMed DOI PMC
Rajan S.T., Subramanian B., Arockiarajan A. A Comprehensive Review on Biocompatible Thin Films for Biomedical Application. Ceram. Int. 2022;48:4377–4400. doi: 10.1016/j.ceramint.2021.10.243. DOI
Lloyd S.J., Molina-Aldareguia J.M. Multilayered materials: A palette for the materials artist. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2003;361:2931–2949. doi: 10.1098/rsta.2003.1276. PubMed DOI
Cancellieri C., Lorenzin G., Jeurgens L.P.H. Microstructure-Property Control in Functional Materials by Multilayer Design. Chimia. 2022;76:223–228. doi: 10.2533/chimia.2022.223. PubMed DOI
Yang L., Watling J.R., Wilkins R.C.W., Borici M., Barker J.R., Asenov A., Roy S. Si/SiGe Heterostructure Parameters for Device Simulations. Semicond. Sci. Technol. 2004;19:1174–1182. doi: 10.1088/0268-1242/19/10/002. DOI
Usami N., Amold A., Fujiwara K., Nakajima K., Yokoyama T., Shiraki Y. New Solar Cells using Ge Dots Embedded in Si PIN Structures; Proceedings of the 1st IEEE International Conference on Group IV Photonics; Hong Kong, China. 29 September–1 October 2004; DOI
Li C., Ni J., Sun X., Wang X., Li Z., Cai H., Li J., Zhang J. Nanocrystalline Germanium Nip Solar Cells with Spectral Sensitivities Extending into 1450 nm. J. Phys. D Appl. Phys. 2017;50:045108. doi: 10.1088/1361-6463/aa4f93. DOI
Krivyakin G.K., Volodin V.A., Kochubei S.A., Kamaev G.N., Purkrt A., Remeš Z., Fajgar R., Stuchlíková T.H., Stuchlík J. Optical Properties of p–i–n Structures Based on Amorphous Hydrogenated Silicon with Silicon Nanocrystals Formed via Nanosecond Laser Annealing. Semiconductors. 2016;50:935–940. doi: 10.1134/S1063782616070101. DOI
Volodin V.A., Krivyakin G.K., Shklyaev A.A., Kochubei S.A., Kamaev G.N., Dvurechendkii A.V., Purkrt A., Remeš Z., Fajgar R., Stuchlíková T.H., et al. Hydrogenated Amorphous Silicon Based p-i-n Structures with Si and Ge Nanocrystals in i-layers. Proc. SPIE. 2016;10224:102240D. doi: 10.1117/12.2266436. DOI
Volodin V.A., Krivyakin G.K., Ivlev G.D., Prokopyev S.L., Gusakova S.V., Popov A.A. Crystallization of Amorphous Germanium Films and Multilayer a-Ge/a-Si Structures upon Exposure to Nanosecond Laser Radiation. Semiconductors. 2019;53:400–405. doi: 10.1134/S1063782619030217. DOI
Remeš Z., Stuchlík J., Stuchlíková T.H., Kupčík J., Mortet V., Taylor A., Ashcheulov P., Volodin V.A. Electroluminescence of Thin Film p-i-n Diodes Based on a-SiC:H with Integrated Ge Nanoparticles. Eur. Phys. J. Appl. Phys. 2019;88:30302. doi: 10.1051/epjap/2020190253. DOI
Sun C., Wade M.T., Lee Y., Orcutt J.S., Alloatti L., Georgas M.S., Waterman A.S., Shainline J.M., Avizienis R.R., Lin S., et al. Single-chip microprocessor that communicates directly using light. Nature. 2015;528:534–538. doi: 10.1038/nature16454. PubMed DOI
Pavesi L., Negro L.D., Mazzoleni C., Franzò G., Priolo F. Multicolor Light-Emitting Devices with Tb2O3 on Silicon. Nature. 2000;408:440–444. doi: 10.1038/35044012. PubMed DOI
Stoffel M., Denker U., Schmidt O.G. Electroluminescence of Self-Assembled Ge Hut Clusters. Appl. Phys. Lett. 2003;82:3236–3238. doi: 10.1063/1.1572479. DOI
Shklyaev A.A., Vdovin V.I., Volodin V.A., Gulyaev D.V., Kozhukhov A.S., Sakuraba M., Murota J. Structure and Optical Properties of Si and SiGe Layers Grown on SiO2 by Chemical Vapor Deposition. Thin Solid Film. 2015;579:131–135. doi: 10.1016/j.tsf.2015.02.076. DOI
Grevtsov N., Chubenko E., Bondarenko V., Gavrilin I., Dronov A., Gavrilov S. Germanium Electrodeposition into Porous Silicon for Silicon-Germanium Alloying. Materialia. 2022;26:101558. doi: 10.1016/j.mtla.2022.101558. DOI
Imajo T., Ishiyama T., Saitoh N., Yoshizawa N., Suemasu T., Toko K. Record-High Hole Mobility Germanium on Flexible Plastic with Controlled Interfacial Reaction. ACS Appl. Electron. Mater. 2022;4:269–275. doi: 10.1021/acsaelm.1c00997. DOI
Nozawa K., Nishida T., Ishiyama T., Suemasu T., Toko K. n-Type Polycrystalline Germanium Layers Formed by Impurity-Doped Solid-Phase Growth. ACS Appl. Electron. Mater. 2023;5:1444–1450. doi: 10.1021/acsaelm.2c01381. DOI
Volodin V.A., Cheng Y., Bulgakov A.V., Levy Y., Beránek J., Nagisetty S.S., Zukerstein M., Popov A.A., Bulgakova N.M. Single-Shot Selective Femtosecond and Picosecond Infrared Laser Crystallization of an Amorphous Ge/Si Multilayer Stack. Opt. Laser Technol. 2023;161:109161. doi: 10.1016/j.optlastec.2023.109161. PubMed DOI
Kolchin A.V., Shuleiko D.V., Pavlikov A.V., Zabotnov S.V., Golovan L.A., Presnov D.E., Volodin V.A., Krivyakin G.K., Popov A.A., Kashkarov P.K. Femtosecond Laser Annealing of Multilayer Thin-Film Structures Based on Amorphous Germanium and Silicon. Tech. Phys. Lett. 2020;46:560–563. doi: 10.1134/S1063785020060048. DOI
Florian C., Fischer D., Freiberg K., Duwe M., Sahre M., Schneider S., Hertwig A., Krüger J., Rettenmayr M., Beck U., et al. Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon. Materials. 2021;14:1651. doi: 10.3390/ma14071651. PubMed DOI PMC
Bonse J., Baudach S., Krüger J., Kautek W., Lenzner M. Femtosecond Laser Ablation of Silicon–Modification Thresholds and Morphology. Appl. Phys. A. 2002;74:19–25. doi: 10.1007/s003390100893. DOI
Werner K., Gruzdev V., Talisa N., Kafka K., Austin D., Liebig C.M., Chowdhury E. Single-Shot Multi-Stage Damage and Ablation of Silicon by Femtosecond Mid-infrared Laser Pulses. Sci. Rep. 2019;9:19993. doi: 10.1038/s41598-019-56384-0. PubMed DOI PMC
Armbruster O., Naghilou A., Kitzler M., Kautek W. Spot Size and Pulse Number Dependence of Femtosecond Laser Ablation Thresholds of Silicon and Stainless Steel. Appl. Surf. Sci. 2017;396:1736–1740. doi: 10.1016/j.apsusc.2016.11.229. DOI
Bonse J., Krüger J. Pulse Number Dependence of Laser-Induced Periodic Surface Structures for Femtosecond Laser Irradiation of Silicon. J. Appl. Phys. 2010;108:034903. doi: 10.1063/1.3456501. DOI
Bonse J., Höhm S., Kirner S.V., Rosenfeld A., Krüger J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Sel. Topics Quantum Electron. 2017;23:9000615. doi: 10.1109/JSTQE.2016.2614183. DOI
Liu J.M. Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes. Opt. Lett. 1982;7:196–198. doi: 10.1364/OL.7.000196. PubMed DOI
Starinskiy S.V., Shukhov Y.G., Bulgakov A.V. Laser-Induced Damage Thresholds of Gold, Silver and Their Alloys in Air and Water. Appl. Surf. Sci. 2017;396:1765–1774. doi: 10.1016/j.apsusc.2016.11.221. DOI
Wihl W., Cardona M., Tauc J. Raman Scattering in Amorphous Ge and III–V Compounds. J. Non-Cryst. Solids. 1972;8–10:172–178. doi: 10.1016/0022-3093(72)90132-9. DOI
Iqbal Z., Veprek S. Raman Scattering from Hydrogenated Microcrystalline and Amorphous Silicon. J. Phys. C Solid State Phys. 1982;15:377–392. doi: 10.1088/0022-3719/15/2/019. DOI
Volodin V.A., Efremov M.D., Deryabin A.S., Sokolov L.V. Determination of the Composition and Stresses in GexSi(1−x) Heterostructures from Raman Spectroscopy Data: Refinement of Model Parameters. Semiconductors. 2006;40:1314–1320. doi: 10.1134/S106378260611011X. DOI
Kolobov A.V. Raman Scattering from Ge Nanostructures Grown on Si Substrates: Power and Limitations. J. Appl. Phys. 2000;87:2926–2930. doi: 10.1063/1.372279. DOI
Volodin V.A., Efremov M.D., Yakimov A.I., Mikhalev G.Y., Nikiforov A.I., Dvurechenskii A.V. Determination of the Composition and Strains in GexSi1−x -based Nanostructures from Raman Spectroscopy Data with Consideration of the Contribution of the Heterointerface. Semiconductors. 2007;41:930–934. doi: 10.1134/S106378260708012X. DOI
Parker J.H., Jr., Feldman D.W., Ashkin M. Raman Scattering by Silicon and Germanium. Phys. Rev. 1967;155:712–714. doi: 10.1103/PhysRev.155.712. DOI
Volodin V.A., Marin D.V., Sachkov V.A., Gorokhov E.B., Rinnert H., Vergnat M. Applying an Improved Phonon Confinement Model to the Analysis of Raman Spectra of Germanium Nanocrystals. J. Exp. Theor. Phys. 2014;118:65–71. doi: 10.1134/S1063776114010208. DOI
Volodin V.A., Sachkov V.A. Improved Model of Optical Phonon Confinement in Silicon Nanocrystals. J. Exp. Theor. Phys. 2013;116:87–94. doi: 10.1134/S1063776112130183. DOI
Reflectance Calculator. [(accessed on 22 March 2023)]. Available online: https://www.filmetrics.com/reflectance-calculator.
Taylor R.E. Thermal expansion of solids. In: Ho C.Y., editor. CINDAS Data Series on Material Properties. 1–4 ASM International; Material Park, OH, USA: 1998.
Gundrum B.G., Averback R.S., Cahill D.G. Time Resolved Measurements of Melting and Solidification in Si Using Third Harmonic Generation of Light. Appl. Phys. Lett. 2007;91:011906. doi: 10.1063/1.2752731. DOI
Taylor L.L., Qiao J., Qiao J. Optimization of Femtosecond Laser Processing of Silicon via Numerical Modeling. Opt. Mater. Express. 2016;6:2745–2758. doi: 10.1364/OME.6.002745. DOI