Ultrafast Infrared Laser Crystallization of Amorphous Si/Ge Multilayer Structures

. 2023 May 06 ; 16 (9) : . [epub] 20230506

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37176457

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000445 European Regional Development Fund and the state budget of the Czech Republic
SGS23/188/OHK4/3T/14 Grant Agency of the Czech Technical University in Prague
Grant FSUS-2020-0029 and Program FFNN-2022-0018 Ministry of Science and Higher Education of the Russian Federation

Silicon-germanium multilayer structures consisting of alternating Si and Ge amorphous nanolayers were annealed by ultrashort laser pulses at near-infrared (1030 nm) and mid-infrared (1500 nm) wavelengths. In this paper, we investigate the effects of the type of substrate (Si or glass), and the number of laser pulses (single-shot and multi-shot regimes) on the crystallization of the layers. Based on structural Raman spectroscopy analysis, several annealing regimes were revealed depending on laser fluence, including partial or complete crystallization of the components and formation of solid Si-Ge alloys. Conditions for selective crystallization of germanium when Si remains amorphous and there is no intermixing between the Si and Ge layers were found. Femtosecond mid-IR laser annealing appeared to be particularly favorable for such selective crystallization. Similar crystallization regimes were observed for both single-shot and multi-shot conditions, although at lower fluences and with a lower selectivity in the latter case. A theoretical analysis was carried out based on the laser energy absorption mechanisms, thermal stresses, and non-thermal effects.

Zobrazit více v PubMed

Akl A.A., Howari H.J. Nanocrystalline Formation and Optical Properties of Germanium Thin Films Prepared by Physical Vapor Deposition. Phys. Chem. Solids. 2009;70:1337–1343. doi: 10.1016/j.jpcs.2009.07.016. DOI

Socol M., Preda N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. Nanomaterials. 2021;11:1117. doi: 10.3390/nano11051117. PubMed DOI PMC

Korkut C., Çınar K., Kabaçelik İ., Turan R., Kulakcı M., Bek A. Laser Crystallization of Amorphous Ge Thin Films via a Nanosecond Pulsed Infrared Laser. Cryst. Growth Des. 2021;21:4632–4639. doi: 10.1021/acs.cgd.1c00470. DOI

Andrei F., Andrei A., Birjega R., Sirjita E.N., Radu A.I., Dinescu M., Ion V., Maraloiu V.-A., Teodorescu V.Ş., Scarisoreanu N.D. The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency. Nanomaterials. 2021;11:110. doi: 10.3390/nano11010110. PubMed DOI PMC

Rajan S.T., Subramanian B., Arockiarajan A. A Comprehensive Review on Biocompatible Thin Films for Biomedical Application. Ceram. Int. 2022;48:4377–4400. doi: 10.1016/j.ceramint.2021.10.243. DOI

Lloyd S.J., Molina-Aldareguia J.M. Multilayered materials: A palette for the materials artist. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2003;361:2931–2949. doi: 10.1098/rsta.2003.1276. PubMed DOI

Cancellieri C., Lorenzin G., Jeurgens L.P.H. Microstructure-Property Control in Functional Materials by Multilayer Design. Chimia. 2022;76:223–228. doi: 10.2533/chimia.2022.223. PubMed DOI

Yang L., Watling J.R., Wilkins R.C.W., Borici M., Barker J.R., Asenov A., Roy S. Si/SiGe Heterostructure Parameters for Device Simulations. Semicond. Sci. Technol. 2004;19:1174–1182. doi: 10.1088/0268-1242/19/10/002. DOI

Usami N., Amold A., Fujiwara K., Nakajima K., Yokoyama T., Shiraki Y. New Solar Cells using Ge Dots Embedded in Si PIN Structures; Proceedings of the 1st IEEE International Conference on Group IV Photonics; Hong Kong, China. 29 September–1 October 2004; DOI

Li C., Ni J., Sun X., Wang X., Li Z., Cai H., Li J., Zhang J. Nanocrystalline Germanium Nip Solar Cells with Spectral Sensitivities Extending into 1450 nm. J. Phys. D Appl. Phys. 2017;50:045108. doi: 10.1088/1361-6463/aa4f93. DOI

Krivyakin G.K., Volodin V.A., Kochubei S.A., Kamaev G.N., Purkrt A., Remeš Z., Fajgar R., Stuchlíková T.H., Stuchlík J. Optical Properties of p–i–n Structures Based on Amorphous Hydrogenated Silicon with Silicon Nanocrystals Formed via Nanosecond Laser Annealing. Semiconductors. 2016;50:935–940. doi: 10.1134/S1063782616070101. DOI

Volodin V.A., Krivyakin G.K., Shklyaev A.A., Kochubei S.A., Kamaev G.N., Dvurechendkii A.V., Purkrt A., Remeš Z., Fajgar R., Stuchlíková T.H., et al. Hydrogenated Amorphous Silicon Based p-i-n Structures with Si and Ge Nanocrystals in i-layers. Proc. SPIE. 2016;10224:102240D. doi: 10.1117/12.2266436. DOI

Volodin V.A., Krivyakin G.K., Ivlev G.D., Prokopyev S.L., Gusakova S.V., Popov A.A. Crystallization of Amorphous Germanium Films and Multilayer a-Ge/a-Si Structures upon Exposure to Nanosecond Laser Radiation. Semiconductors. 2019;53:400–405. doi: 10.1134/S1063782619030217. DOI

Remeš Z., Stuchlík J., Stuchlíková T.H., Kupčík J., Mortet V., Taylor A., Ashcheulov P., Volodin V.A. Electroluminescence of Thin Film p-i-n Diodes Based on a-SiC:H with Integrated Ge Nanoparticles. Eur. Phys. J. Appl. Phys. 2019;88:30302. doi: 10.1051/epjap/2020190253. DOI

Sun C., Wade M.T., Lee Y., Orcutt J.S., Alloatti L., Georgas M.S., Waterman A.S., Shainline J.M., Avizienis R.R., Lin S., et al. Single-chip microprocessor that communicates directly using light. Nature. 2015;528:534–538. doi: 10.1038/nature16454. PubMed DOI

Pavesi L., Negro L.D., Mazzoleni C., Franzò G., Priolo F. Multicolor Light-Emitting Devices with Tb2O3 on Silicon. Nature. 2000;408:440–444. doi: 10.1038/35044012. PubMed DOI

Stoffel M., Denker U., Schmidt O.G. Electroluminescence of Self-Assembled Ge Hut Clusters. Appl. Phys. Lett. 2003;82:3236–3238. doi: 10.1063/1.1572479. DOI

Shklyaev A.A., Vdovin V.I., Volodin V.A., Gulyaev D.V., Kozhukhov A.S., Sakuraba M., Murota J. Structure and Optical Properties of Si and SiGe Layers Grown on SiO2 by Chemical Vapor Deposition. Thin Solid Film. 2015;579:131–135. doi: 10.1016/j.tsf.2015.02.076. DOI

Grevtsov N., Chubenko E., Bondarenko V., Gavrilin I., Dronov A., Gavrilov S. Germanium Electrodeposition into Porous Silicon for Silicon-Germanium Alloying. Materialia. 2022;26:101558. doi: 10.1016/j.mtla.2022.101558. DOI

Imajo T., Ishiyama T., Saitoh N., Yoshizawa N., Suemasu T., Toko K. Record-High Hole Mobility Germanium on Flexible Plastic with Controlled Interfacial Reaction. ACS Appl. Electron. Mater. 2022;4:269–275. doi: 10.1021/acsaelm.1c00997. DOI

Nozawa K., Nishida T., Ishiyama T., Suemasu T., Toko K. n-Type Polycrystalline Germanium Layers Formed by Impurity-Doped Solid-Phase Growth. ACS Appl. Electron. Mater. 2023;5:1444–1450. doi: 10.1021/acsaelm.2c01381. DOI

Volodin V.A., Cheng Y., Bulgakov A.V., Levy Y., Beránek J., Nagisetty S.S., Zukerstein M., Popov A.A., Bulgakova N.M. Single-Shot Selective Femtosecond and Picosecond Infrared Laser Crystallization of an Amorphous Ge/Si Multilayer Stack. Opt. Laser Technol. 2023;161:109161. doi: 10.1016/j.optlastec.2023.109161. PubMed DOI

Kolchin A.V., Shuleiko D.V., Pavlikov A.V., Zabotnov S.V., Golovan L.A., Presnov D.E., Volodin V.A., Krivyakin G.K., Popov A.A., Kashkarov P.K. Femtosecond Laser Annealing of Multilayer Thin-Film Structures Based on Amorphous Germanium and Silicon. Tech. Phys. Lett. 2020;46:560–563. doi: 10.1134/S1063785020060048. DOI

Florian C., Fischer D., Freiberg K., Duwe M., Sahre M., Schneider S., Hertwig A., Krüger J., Rettenmayr M., Beck U., et al. Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon. Materials. 2021;14:1651. doi: 10.3390/ma14071651. PubMed DOI PMC

Bonse J., Baudach S., Krüger J., Kautek W., Lenzner M. Femtosecond Laser Ablation of Silicon–Modification Thresholds and Morphology. Appl. Phys. A. 2002;74:19–25. doi: 10.1007/s003390100893. DOI

Werner K., Gruzdev V., Talisa N., Kafka K., Austin D., Liebig C.M., Chowdhury E. Single-Shot Multi-Stage Damage and Ablation of Silicon by Femtosecond Mid-infrared Laser Pulses. Sci. Rep. 2019;9:19993. doi: 10.1038/s41598-019-56384-0. PubMed DOI PMC

Armbruster O., Naghilou A., Kitzler M., Kautek W. Spot Size and Pulse Number Dependence of Femtosecond Laser Ablation Thresholds of Silicon and Stainless Steel. Appl. Surf. Sci. 2017;396:1736–1740. doi: 10.1016/j.apsusc.2016.11.229. DOI

Bonse J., Krüger J. Pulse Number Dependence of Laser-Induced Periodic Surface Structures for Femtosecond Laser Irradiation of Silicon. J. Appl. Phys. 2010;108:034903. doi: 10.1063/1.3456501. DOI

Bonse J., Höhm S., Kirner S.V., Rosenfeld A., Krüger J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Sel. Topics Quantum Electron. 2017;23:9000615. doi: 10.1109/JSTQE.2016.2614183. DOI

Liu J.M. Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes. Opt. Lett. 1982;7:196–198. doi: 10.1364/OL.7.000196. PubMed DOI

Starinskiy S.V., Shukhov Y.G., Bulgakov A.V. Laser-Induced Damage Thresholds of Gold, Silver and Their Alloys in Air and Water. Appl. Surf. Sci. 2017;396:1765–1774. doi: 10.1016/j.apsusc.2016.11.221. DOI

Wihl W., Cardona M., Tauc J. Raman Scattering in Amorphous Ge and III–V Compounds. J. Non-Cryst. Solids. 1972;8–10:172–178. doi: 10.1016/0022-3093(72)90132-9. DOI

Iqbal Z., Veprek S. Raman Scattering from Hydrogenated Microcrystalline and Amorphous Silicon. J. Phys. C Solid State Phys. 1982;15:377–392. doi: 10.1088/0022-3719/15/2/019. DOI

Volodin V.A., Efremov M.D., Deryabin A.S., Sokolov L.V. Determination of the Composition and Stresses in GexSi(1−x) Heterostructures from Raman Spectroscopy Data: Refinement of Model Parameters. Semiconductors. 2006;40:1314–1320. doi: 10.1134/S106378260611011X. DOI

Kolobov A.V. Raman Scattering from Ge Nanostructures Grown on Si Substrates: Power and Limitations. J. Appl. Phys. 2000;87:2926–2930. doi: 10.1063/1.372279. DOI

Volodin V.A., Efremov M.D., Yakimov A.I., Mikhalev G.Y., Nikiforov A.I., Dvurechenskii A.V. Determination of the Composition and Strains in GexSi1−x -based Nanostructures from Raman Spectroscopy Data with Consideration of the Contribution of the Heterointerface. Semiconductors. 2007;41:930–934. doi: 10.1134/S106378260708012X. DOI

Parker J.H., Jr., Feldman D.W., Ashkin M. Raman Scattering by Silicon and Germanium. Phys. Rev. 1967;155:712–714. doi: 10.1103/PhysRev.155.712. DOI

Volodin V.A., Marin D.V., Sachkov V.A., Gorokhov E.B., Rinnert H., Vergnat M. Applying an Improved Phonon Confinement Model to the Analysis of Raman Spectra of Germanium Nanocrystals. J. Exp. Theor. Phys. 2014;118:65–71. doi: 10.1134/S1063776114010208. DOI

Volodin V.A., Sachkov V.A. Improved Model of Optical Phonon Confinement in Silicon Nanocrystals. J. Exp. Theor. Phys. 2013;116:87–94. doi: 10.1134/S1063776112130183. DOI

Reflectance Calculator. [(accessed on 22 March 2023)]. Available online: https://www.filmetrics.com/reflectance-calculator.

Taylor R.E. Thermal expansion of solids. In: Ho C.Y., editor. CINDAS Data Series on Material Properties. 1–4 ASM International; Material Park, OH, USA: 1998.

Gundrum B.G., Averback R.S., Cahill D.G. Time Resolved Measurements of Melting and Solidification in Si Using Third Harmonic Generation of Light. Appl. Phys. Lett. 2007;91:011906. doi: 10.1063/1.2752731. DOI

Taylor L.L., Qiao J., Qiao J. Optimization of Femtosecond Laser Processing of Silicon via Numerical Modeling. Opt. Mater. Express. 2016;6:2745–2758. doi: 10.1364/OME.6.002745. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates

. 2023 Oct 31 ; 14 (11) : . [epub] 20231031

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...