Quantitative Assessment of Upper Limb Movement in Post-Stroke Adults for Identification of Sensitive Measures in Reaching and Lifting Activities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37176773
PubMed Central
PMC10179564
DOI
10.3390/jcm12093333
PII: jcm12093333
Knihovny.cz E-zdroje
- Klíčová slova
- post-stroke movement features, quantification of movement, upper limb,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The assumption of this work is the achievement of objective results of the movement structure, which forms the basis for in-depth analysis and, consequently, for determining the upper limb movements that are most affected by stroke compared to healthy people. METHODS: An analysis of relevant and systematically identified features of upper limb movement in post-stroke adults is presented based on scalable hypothesis tests. The basic features were calculated using movements defined by the x, y, and z coordinates (i.e., 3D trajectory time series) and compared to the results of post-stroke patients with healthy controls of similar age. RESULTS: After automatic feature selection, out of the 1004 common features of upper limb movement, the most differentiated were the upper arm movements in reaching kinematics. In terms of movement type, movements in the frontal plane (shoulder abduction and adduction) were the most sensitive to changes. The largest number of discriminating features was determined on the basis of acceleration time series. CONCLUSIONS: In the 3D assessment of functional activities of the upper limb, the upper arm turned out to be the most differentiated body segment, especially during abduction and adduction movements. The results indicate a special need to pay attention to abduction and adduction movements to improve the activities of daily living of the upper limbs after a stroke.
Zobrazit více v PubMed
Sathian K., Buxbaum L.J., Cohen L.G., Krakauer J.W., Lang C.E., Corbetta M., Fitzpatrick S.M. Neurological principles and rehabilitation of action disorders: Common clinical deficits. Neurorehabil. Neural Repair. 2011;25:21S–32S. doi: 10.1177/1545968311410941. PubMed DOI PMC
Béjot Y., Bailly H., Durier J., Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. 12 Pt2Presse Med. 2016;45:e391–e398. doi: 10.1016/j.lpm.2016.10.003. PubMed DOI
Kernan W.N., Ovbiagele B., Black H.R., Bravata D.M., Chimowitz M.I., Ezekowitz M.D., Fang M.C., Fisher M., Furie K.L., Heck D.V., et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:2160–2236. doi: 10.1161/STR.0000000000000024. PubMed DOI
Resquín F., Gonzalez-Vargas J., Ibáñez J., Brunetti F., Dimbwadyo I., Carrasco L., Alves S., Gonzalez-Alted C., Gomez-Blanco A., Pons J.L. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: A usability study. J. Neuroeng. Rehabil. 2017;14:104. doi: 10.1186/s12984-017-0312-4. PubMed DOI PMC
Pike S., Cusick A., Wales K., Cameron L., Turner-Stokes L., Ashford S., Lannin N.A. Psychometric properties of measures of upper limb activity performance in adults with and without spasticity undergoing neurorehabilitation-A systematic review. PLoS ONE. 2021;16:e0246288. doi: 10.1371/journal.pone.0246288. PubMed DOI PMC
Hijikata N., Kawakami M., Ishii R., Tsuzuki K., Nakamura T., Okuyama K., Liu M. Item Difficulty of Fugl-Meyer Assessment for Upper Extremity in Persons with Chronic Stroke With Moderate-to-Severe Upper Limb Impairment. Front. Neurol. 2020;11:577855. doi: 10.3389/fneur.2020.577855. PubMed DOI PMC
Olesh E.V., Yakovenko S., Gritsenko V. Automated Assessment of Upper Extremity Movement Impairment due to Stroke. PLoS ONE. 2014;9:e104487. doi: 10.1371/journal.pone.0104487. PubMed DOI PMC
Gladstone D.J., Danells C.J., Black S.E. The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil. Neural Repair. 2002;16:232–240. doi: 10.1177/154596802401105171. PubMed DOI
Johansson G.M., Grip H., Levin M.F., Häger C.K. The added value of kinematic evaluation of the timed finger-to-nose test in persons post-stroke. J. Neuroeng. Rehabil. 2017;14:11. doi: 10.1186/s12984-017-0220-7. PubMed DOI PMC
Subramanian S.K., Baniña M.C., Sambasivan K., Haentjens K., Finestone H.M., Sveistrup H., Levin M.F. Motor-Equivalent Intersegmental Coordination Is Impaired in Chronic Stroke. Neurorehabil. Neural Repair. 2020;34:210–221. doi: 10.1177/1545968319899912. PubMed DOI
Mesquita I.A., Fonseca P.F.P.D., Pinheiro A.R.V., Velhote Correia M.F.P., Silva C.I.C.D. Methodological considerations for kinematic analysis of upper limbs in healthy and poststroke adults Part II: A systematic review of motion capture systems and kinematic metrics. Top Stroke Rehabil. 2019;26:464–472. doi: 10.1080/10749357.2019.1611221. PubMed DOI
Valevicius A.M., Boser Q.A., Lavoie E.B., Chapman C.S., Pilarski P.M., Hebert J.S., Vette A.H. Characterization of normative angular joint kinematics during two functional upper limb tasks. Gait Posture. 2019;69:176–186. doi: 10.1016/j.gaitpost.2019.01.037. PubMed DOI
Schwarz A., Kanzler C.M., Lambercy O., Luft A.R., Veerbeek J.M. Systematic Review on Kinematic Assessments of Upper Limb Movements After Stroke. Stroke. 2019;50:718–727. doi: 10.1161/STROKEAHA.118.023531. PubMed DOI
Valevicius A.M., Jun P.Y., Hebert J.S., Vette A.H. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review. J. Electromyogr. Kinesiol. 2018;40:1–15. doi: 10.1016/j.jelekin.2018.02.011. PubMed DOI
Sullivan J.E., Crowner B.E., Kluding P.M., Nichols D., Rose D.K., Yoshida R., Pinto Zipp G. Outcome measures for individuals with stroke: Process and recommendations from the American Physical Therapy Association neurology section task force. Phys. Ther. 2013;93:1383–1396. doi: 10.2522/ptj.20120492. PubMed DOI
Schwarz A., Veerbeek J.M., Held J.P.O., Buurke J.H., Luft A.R. Measures of Interjoint Coordination Post-stroke Across Different Upper Limb Movement Tasks. Front. Bioeng. Biotechnol. 2021;8:620805. doi: 10.3389/fbioe.2020.620805. PubMed DOI PMC
Huang V.S., Krakauer J.W. Robotic neurorehabilitation: A computational motor learning perspective. J. Neuroeng. Rehabil. 2009;6:5. doi: 10.1186/1743-0003-6-5. PubMed DOI PMC
Flash T., Hogan N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985;5:1688–1703. doi: 10.1523/JNEUROSCI.05-07-01688.1985. PubMed DOI PMC
Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S., Wang Y., Dong Q., Shen H., Wang Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017;2:230–243. doi: 10.1136/svn-2017-000101. PubMed DOI PMC
Sehle A., Stuerner J., Hassa T., Spiteri S., Schoenfeld M.A., Liepert J. Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: A case control study. J. Neuroeng. Rehabil. 2021;18:6. doi: 10.1186/s12984-020-00792-1. PubMed DOI PMC
Kwakkel G., van Wegen E.E.H., Burridge J.H., Winstein C.J., van Dokkum L.E.H., Alt Murphy M., Levin M.F., Krakauer J.W., ADVISORY group Standardized Measurement of Quality of Upper Limb Movement After Stroke: Consensus-Based Core Recommendations From the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabil. Neural Repair. 2019;33:951–958. doi: 10.1177/1545968319886477. PubMed DOI
Wey H.Y., Desai V.R., Duong T.Q. A review of current imaging methods used in stroke research. Neurol. Res. 2013;35:1092–1102. doi: 10.1179/1743132813Y.0000000250. PubMed DOI PMC
Liang P., Kwong W.H., Sidarta A., Yap C.K., Tan W.K., Lim L.S., Chan P.Y., Kuah C.W.K., Wee S.K., Chua K., et al. An Asian-centric human movement database capturing activities of daily living. Sci. Data. 2020;7:290. doi: 10.1038/s41597-020-00627-7. PubMed DOI PMC
Blaszczyszyn M., Szczesna A., Opara J., Konieczny M., Pakosz P., Balko S. Functional differences in upper limb movement after early and chronic stroke based on kinematic motion indicators. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2018. ahead of print . PubMed DOI
Szczęsna A., Błaszczyszyn M., Kawala-Sterniuk A. Convolutional neural network in upper limb functional motion analysis after stroke. Peer J. 2020;8:e10124. doi: 10.7717/peerj.10124. PubMed DOI PMC
Jarrassé N., Proietti T., Crocher V., Robertson J., Sahbani A., Morel G., Roby-Brami A. Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients. Front. Hum. Neurosci. 2014;8:947. doi: 10.3389/fnhum.2014.00947. PubMed DOI PMC
Huang X., Naghdy F., Naghdy G., Du H., Todd C. Robot-assisted post-stroke motion rehabilitation in upper extremities: A survey. Int. J. Dis. Hum. Dev. 2017;16:233–247. doi: 10.1515/ijdhd-2016-0035. DOI
Nagymáté G., Rita M.K. Application of OptiTrack Motion Capture Systems in Human Movement Analysis: A Systematic Literature Review. RIiM. 2018;5:1–9. doi: 10.17667/riim.2018.1/13. DOI
Wu G., van der Helm F.C., Veeger H.E., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005;38:981–992. doi: 10.1016/j.jbiomech.2004.05.042. PubMed DOI
Heller A., Wade D.T., Wood V.A., Sunderland A., Hewer R.L., Ward E. Arm function after stroke: Measurement and recovery over the first three months. J. Neurol. Neurosurg. Psychiatry. 1987;50:714–719. doi: 10.1136/jnnp.50.6.714. PubMed DOI PMC
Christ M., Braun N., Neuffer J., Kempa-Liehr A.W. Time series feature extraction on basis of scalable hypothesis tests (tsfresh—A python package) Neurocomputing. 2018;307:72–77. doi: 10.1016/j.neucom.2018.03.067. DOI
Dindorf C., Teufl W., Taetz B., Bleser G., Fröhlich M. Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty. Sensors. 2020;20:4385. doi: 10.3390/s20164385. PubMed DOI PMC
Yoav B., and Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–1188. doi: 10.1214/aos/1013699998. DOI
Lum P.S., Shu L., Bochniewicz E.M., Tran T., Chang L.C., Barth J., Dromerick A.W. Improving Accelerometry-Based Measurement of Functional Use of the Upper Extremity After Stroke: Machine Learning Versus Counts Threshold Method. Neurorehabil. Neural Repair. 2020;34:1078–1087. doi: 10.1177/1545968320962483. PubMed DOI PMC
van der Vliet R., Selles R.W., Andrinopoulou E.R., Nijland R., Ribbers G.M., Frens M.A., Meskers C., Kwakkel G. Predicting Upper Limb Motor Impairment Recovery after Stroke: A Mixture Model. Ann. Neurol. 2020;87:383–393. doi: 10.1002/ana.25679. PubMed DOI PMC
Regterschot G.R.H., Bussmann J.B.J., Fanchamps M.H.J., Meskers C.G.M., Ribbers G.M., Selles R.W. Objectively measured arm use in daily life improves during the first 6 months poststroke: A longitudinal observational cohort study. J. Neuroeng. Rehabil. 2021;18:51. doi: 10.1186/s12984-021-00847-x. PubMed DOI PMC
Maffiuletti N.A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur. J. Appl. Physiol. 2010;110:223–234. doi: 10.1007/s00421-010-1502-y. PubMed DOI
Konieczny M., Pakosz P., Domaszewski P., Błaszczyszyn M., Kawala-Sterniuk A. Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring. Appl. Sci. 2022;12:1551. doi: 10.3390/app12031551. DOI
Barth J., Klaesner J.W., Lang C.E. Relationships between accelerometry and general compensatory movements of the upper limb after stroke. J. Neuroeng. Rehabil. 2020;17:138. doi: 10.1186/s12984-020-00773-4. PubMed DOI PMC