Quantitative Assessment of Upper Limb Movement in Post-Stroke Adults for Identification of Sensitive Measures in Reaching and Lifting Activities

. 2023 May 08 ; 12 (9) : . [epub] 20230508

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37176773

BACKGROUND: The assumption of this work is the achievement of objective results of the movement structure, which forms the basis for in-depth analysis and, consequently, for determining the upper limb movements that are most affected by stroke compared to healthy people. METHODS: An analysis of relevant and systematically identified features of upper limb movement in post-stroke adults is presented based on scalable hypothesis tests. The basic features were calculated using movements defined by the x, y, and z coordinates (i.e., 3D trajectory time series) and compared to the results of post-stroke patients with healthy controls of similar age. RESULTS: After automatic feature selection, out of the 1004 common features of upper limb movement, the most differentiated were the upper arm movements in reaching kinematics. In terms of movement type, movements in the frontal plane (shoulder abduction and adduction) were the most sensitive to changes. The largest number of discriminating features was determined on the basis of acceleration time series. CONCLUSIONS: In the 3D assessment of functional activities of the upper limb, the upper arm turned out to be the most differentiated body segment, especially during abduction and adduction movements. The results indicate a special need to pay attention to abduction and adduction movements to improve the activities of daily living of the upper limbs after a stroke.

Zobrazit více v PubMed

Sathian K., Buxbaum L.J., Cohen L.G., Krakauer J.W., Lang C.E., Corbetta M., Fitzpatrick S.M. Neurological principles and rehabilitation of action disorders: Common clinical deficits. Neurorehabil. Neural Repair. 2011;25:21S–32S. doi: 10.1177/1545968311410941. PubMed DOI PMC

Béjot Y., Bailly H., Durier J., Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. 12 Pt2Presse Med. 2016;45:e391–e398. doi: 10.1016/j.lpm.2016.10.003. PubMed DOI

Kernan W.N., Ovbiagele B., Black H.R., Bravata D.M., Chimowitz M.I., Ezekowitz M.D., Fang M.C., Fisher M., Furie K.L., Heck D.V., et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:2160–2236. doi: 10.1161/STR.0000000000000024. PubMed DOI

Resquín F., Gonzalez-Vargas J., Ibáñez J., Brunetti F., Dimbwadyo I., Carrasco L., Alves S., Gonzalez-Alted C., Gomez-Blanco A., Pons J.L. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: A usability study. J. Neuroeng. Rehabil. 2017;14:104. doi: 10.1186/s12984-017-0312-4. PubMed DOI PMC

Pike S., Cusick A., Wales K., Cameron L., Turner-Stokes L., Ashford S., Lannin N.A. Psychometric properties of measures of upper limb activity performance in adults with and without spasticity undergoing neurorehabilitation-A systematic review. PLoS ONE. 2021;16:e0246288. doi: 10.1371/journal.pone.0246288. PubMed DOI PMC

Hijikata N., Kawakami M., Ishii R., Tsuzuki K., Nakamura T., Okuyama K., Liu M. Item Difficulty of Fugl-Meyer Assessment for Upper Extremity in Persons with Chronic Stroke With Moderate-to-Severe Upper Limb Impairment. Front. Neurol. 2020;11:577855. doi: 10.3389/fneur.2020.577855. PubMed DOI PMC

Olesh E.V., Yakovenko S., Gritsenko V. Automated Assessment of Upper Extremity Movement Impairment due to Stroke. PLoS ONE. 2014;9:e104487. doi: 10.1371/journal.pone.0104487. PubMed DOI PMC

Gladstone D.J., Danells C.J., Black S.E. The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil. Neural Repair. 2002;16:232–240. doi: 10.1177/154596802401105171. PubMed DOI

Johansson G.M., Grip H., Levin M.F., Häger C.K. The added value of kinematic evaluation of the timed finger-to-nose test in persons post-stroke. J. Neuroeng. Rehabil. 2017;14:11. doi: 10.1186/s12984-017-0220-7. PubMed DOI PMC

Subramanian S.K., Baniña M.C., Sambasivan K., Haentjens K., Finestone H.M., Sveistrup H., Levin M.F. Motor-Equivalent Intersegmental Coordination Is Impaired in Chronic Stroke. Neurorehabil. Neural Repair. 2020;34:210–221. doi: 10.1177/1545968319899912. PubMed DOI

Mesquita I.A., Fonseca P.F.P.D., Pinheiro A.R.V., Velhote Correia M.F.P., Silva C.I.C.D. Methodological considerations for kinematic analysis of upper limbs in healthy and poststroke adults Part II: A systematic review of motion capture systems and kinematic metrics. Top Stroke Rehabil. 2019;26:464–472. doi: 10.1080/10749357.2019.1611221. PubMed DOI

Valevicius A.M., Boser Q.A., Lavoie E.B., Chapman C.S., Pilarski P.M., Hebert J.S., Vette A.H. Characterization of normative angular joint kinematics during two functional upper limb tasks. Gait Posture. 2019;69:176–186. doi: 10.1016/j.gaitpost.2019.01.037. PubMed DOI

Schwarz A., Kanzler C.M., Lambercy O., Luft A.R., Veerbeek J.M. Systematic Review on Kinematic Assessments of Upper Limb Movements After Stroke. Stroke. 2019;50:718–727. doi: 10.1161/STROKEAHA.118.023531. PubMed DOI

Valevicius A.M., Jun P.Y., Hebert J.S., Vette A.H. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review. J. Electromyogr. Kinesiol. 2018;40:1–15. doi: 10.1016/j.jelekin.2018.02.011. PubMed DOI

Sullivan J.E., Crowner B.E., Kluding P.M., Nichols D., Rose D.K., Yoshida R., Pinto Zipp G. Outcome measures for individuals with stroke: Process and recommendations from the American Physical Therapy Association neurology section task force. Phys. Ther. 2013;93:1383–1396. doi: 10.2522/ptj.20120492. PubMed DOI

Schwarz A., Veerbeek J.M., Held J.P.O., Buurke J.H., Luft A.R. Measures of Interjoint Coordination Post-stroke Across Different Upper Limb Movement Tasks. Front. Bioeng. Biotechnol. 2021;8:620805. doi: 10.3389/fbioe.2020.620805. PubMed DOI PMC

Huang V.S., Krakauer J.W. Robotic neurorehabilitation: A computational motor learning perspective. J. Neuroeng. Rehabil. 2009;6:5. doi: 10.1186/1743-0003-6-5. PubMed DOI PMC

Flash T., Hogan N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985;5:1688–1703. doi: 10.1523/JNEUROSCI.05-07-01688.1985. PubMed DOI PMC

Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S., Wang Y., Dong Q., Shen H., Wang Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017;2:230–243. doi: 10.1136/svn-2017-000101. PubMed DOI PMC

Sehle A., Stuerner J., Hassa T., Spiteri S., Schoenfeld M.A., Liepert J. Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: A case control study. J. Neuroeng. Rehabil. 2021;18:6. doi: 10.1186/s12984-020-00792-1. PubMed DOI PMC

Kwakkel G., van Wegen E.E.H., Burridge J.H., Winstein C.J., van Dokkum L.E.H., Alt Murphy M., Levin M.F., Krakauer J.W., ADVISORY group Standardized Measurement of Quality of Upper Limb Movement After Stroke: Consensus-Based Core Recommendations From the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabil. Neural Repair. 2019;33:951–958. doi: 10.1177/1545968319886477. PubMed DOI

Wey H.Y., Desai V.R., Duong T.Q. A review of current imaging methods used in stroke research. Neurol. Res. 2013;35:1092–1102. doi: 10.1179/1743132813Y.0000000250. PubMed DOI PMC

Liang P., Kwong W.H., Sidarta A., Yap C.K., Tan W.K., Lim L.S., Chan P.Y., Kuah C.W.K., Wee S.K., Chua K., et al. An Asian-centric human movement database capturing activities of daily living. Sci. Data. 2020;7:290. doi: 10.1038/s41597-020-00627-7. PubMed DOI PMC

Blaszczyszyn M., Szczesna A., Opara J., Konieczny M., Pakosz P., Balko S. Functional differences in upper limb movement after early and chronic stroke based on kinematic motion indicators. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2018. ahead of print . PubMed DOI

Szczęsna A., Błaszczyszyn M., Kawala-Sterniuk A. Convolutional neural network in upper limb functional motion analysis after stroke. Peer J. 2020;8:e10124. doi: 10.7717/peerj.10124. PubMed DOI PMC

Jarrassé N., Proietti T., Crocher V., Robertson J., Sahbani A., Morel G., Roby-Brami A. Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients. Front. Hum. Neurosci. 2014;8:947. doi: 10.3389/fnhum.2014.00947. PubMed DOI PMC

Huang X., Naghdy F., Naghdy G., Du H., Todd C. Robot-assisted post-stroke motion rehabilitation in upper extremities: A survey. Int. J. Dis. Hum. Dev. 2017;16:233–247. doi: 10.1515/ijdhd-2016-0035. DOI

Nagymáté G., Rita M.K. Application of OptiTrack Motion Capture Systems in Human Movement Analysis: A Systematic Literature Review. RIiM. 2018;5:1–9. doi: 10.17667/riim.2018.1/13. DOI

Wu G., van der Helm F.C., Veeger H.E., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005;38:981–992. doi: 10.1016/j.jbiomech.2004.05.042. PubMed DOI

Heller A., Wade D.T., Wood V.A., Sunderland A., Hewer R.L., Ward E. Arm function after stroke: Measurement and recovery over the first three months. J. Neurol. Neurosurg. Psychiatry. 1987;50:714–719. doi: 10.1136/jnnp.50.6.714. PubMed DOI PMC

Christ M., Braun N., Neuffer J., Kempa-Liehr A.W. Time series feature extraction on basis of scalable hypothesis tests (tsfresh—A python package) Neurocomputing. 2018;307:72–77. doi: 10.1016/j.neucom.2018.03.067. DOI

Dindorf C., Teufl W., Taetz B., Bleser G., Fröhlich M. Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty. Sensors. 2020;20:4385. doi: 10.3390/s20164385. PubMed DOI PMC

Yoav B., and Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–1188. doi: 10.1214/aos/1013699998. DOI

Lum P.S., Shu L., Bochniewicz E.M., Tran T., Chang L.C., Barth J., Dromerick A.W. Improving Accelerometry-Based Measurement of Functional Use of the Upper Extremity After Stroke: Machine Learning Versus Counts Threshold Method. Neurorehabil. Neural Repair. 2020;34:1078–1087. doi: 10.1177/1545968320962483. PubMed DOI PMC

van der Vliet R., Selles R.W., Andrinopoulou E.R., Nijland R., Ribbers G.M., Frens M.A., Meskers C., Kwakkel G. Predicting Upper Limb Motor Impairment Recovery after Stroke: A Mixture Model. Ann. Neurol. 2020;87:383–393. doi: 10.1002/ana.25679. PubMed DOI PMC

Regterschot G.R.H., Bussmann J.B.J., Fanchamps M.H.J., Meskers C.G.M., Ribbers G.M., Selles R.W. Objectively measured arm use in daily life improves during the first 6 months poststroke: A longitudinal observational cohort study. J. Neuroeng. Rehabil. 2021;18:51. doi: 10.1186/s12984-021-00847-x. PubMed DOI PMC

Maffiuletti N.A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur. J. Appl. Physiol. 2010;110:223–234. doi: 10.1007/s00421-010-1502-y. PubMed DOI

Konieczny M., Pakosz P., Domaszewski P., Błaszczyszyn M., Kawala-Sterniuk A. Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring. Appl. Sci. 2022;12:1551. doi: 10.3390/app12031551. DOI

Barth J., Klaesner J.W., Lang C.E. Relationships between accelerometry and general compensatory movements of the upper limb after stroke. J. Neuroeng. Rehabil. 2020;17:138. doi: 10.1186/s12984-020-00773-4. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...