Combination Treatment Targeting mTOR and MAPK Pathways Has Synergistic Activity in Multiple Myeloma

. 2023 Apr 19 ; 15 (8) : . [epub] 20230419

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37190302

Grantová podpora
DJCLS 17R/2018 José Carreras Leukämie Stiftung
70112392 Deutsche Krebshilfe
KH331/2-3 Deutsche Forschungsgemeinschaft
Kha2/002/20 the intramural funding of the Faculty of Medicine at University Hospital Münster

Multiple myeloma (MM) is an incurable, malignant B cell disorder characterized by frequent relapses and a poor prognosis. Thus, new therapeutic approaches are warranted. The phosphatidylinositol-3-kinase (PI3K) pathway plays a key role in many critical cellular processes, including cell proliferation and survival. Activated PI3K/AKT (protein kinases B)/mTOR (mammalian target of rapamycin) signaling has been identified in MM primary patient samples and cell lines. In this study, the efficacy of PI3K and mTOR inhibitors in various MM cell lines representing three different prognostic subtypes was tested. Whereas MM cell lines were rather resistant to PI3K inhibition, treatment with the mTOR inhibitor temsirolimus decreases the phosphorylation of key molecules in the PI3K pathway in MM cell lines, leading to G0/G1 cell cycle arrest and thus reduced proliferation. Strikingly, the efficacy of temsirolimus was amplified by combining the treatment with the Mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. Our findings provide a scientific rationale for the simultaneous inhibition of mTOR and MEK as a novel strategy for the treatment of MM.

Zobrazit více v PubMed

Kristinsson S.Y., Landgren O., Dickman P.W., Derolf Å.R., Björkholm M. Patterns of survival in multiple myeloma: A population-based study of patients diagnosed in Sweden from 1973 to 2003. J. Clin. Oncol. 2007;25:1993–1999. doi: 10.1200/JCO.2006.09.0100. PubMed DOI

al Hamed R., Bazarbachi A.H., Malard F., Harousseau J.L., Mohty M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2019;9:44. doi: 10.1038/s41408-019-0205-9. PubMed DOI PMC

Pillarisetti K., Edavettal S., Mendonça M., Li Y., Tornetta M., Babich A., Majewski N., Husovsky M., Reeves D., Walsh E., et al. A T-cell–redirecting bispecific G-protein–coupled receptor class 5 member D × CD3 antibody to treat multiple myeloma. Blood. 2020;135:1232–1243. doi: 10.1182/blood.2019003342. PubMed DOI PMC

Ghosh A., Mailankody S., Giralt S.A., Landgren C.O., Smith E.L., Brentjens R.J. CAR T Cell Therapy for Multiple Myeloma: Where are We Now and Where are We Headed? Leukemia and Lymphoma. Volume 59. Taylor and Francis Ltd.; Abingdon, UK: 2018. pp. 2056–2067. PubMed PMC

Bianchi G., Anderson K.C. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J. Clin. 2014;64:422–444. doi: 10.3322/caac.21252. PubMed DOI

Rajkumar S.V., Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10:94. doi: 10.1038/s41408-020-00359-2. PubMed DOI PMC

Kaegi C., Wuest B., Schreiner J., Steiner U.C., Vultaggio A., Matucci A., Crowley C., Boyman O. Systematic review of safety and efficacy of rituximab in treating immune-mediated disorders. Front. Immunol. 2019;10:1990. doi: 10.3389/fimmu.2019.01990. PubMed DOI PMC

Marcus R., Davies A., Ando K., Klapper W., Opat S., Owen C., Phillips E., Sangha R., Schlag R., Seymour J.F., et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N. Engl. J. Med. 2017;377:1331–1344. doi: 10.1056/NEJMoa1614598. PubMed DOI

Qiang Y.W., Yao L., Tosato G., Rudikoff S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood. 2004;103:301–308. doi: 10.1182/blood-2003-06-2066. PubMed DOI

Engelman J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer. 2009;9:550–562. doi: 10.1038/nrc2664. PubMed DOI

Erdmann T., Klener P., Lynch J.T., Grau M., Vočková P., Molinsky J., Tuskova D., Hudson K., Polanska U.M., Grondine M., et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood J. Am. Soc. Hematol. 2017;130:310–322. doi: 10.1182/blood-2016-12-758599. PubMed DOI

Dreyling M., Santoro A., Mollica L., Leppä S., Follows G.A., Lenz G., Kim W.S., Nagler A., Panayiotidis P., Demeter J., et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J. Clin. Oncol. 2017;35:3898–3905. doi: 10.1200/JCO.2017.75.4648. PubMed DOI

Oki Y., Fanale M., Romaguera J., Fayad L., Fowler N., Copeland A., Samaniego F., Kwak L.W., Neelapu S., Wang M., et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br. J. Haematol. 2015;171:463–470. doi: 10.1111/bjh.13603. PubMed DOI PMC

Jhanwar-Uniyal M., Wainwright J.v., Mohan A.L., Tobias M.E., Murali R., Gandhi C.D., Schmidt M.H. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv. Biol. Regul. 2019;72:51–62. doi: 10.1016/j.jbior.2019.03.003. PubMed DOI

Adachi M., Hoshino Y., Izumi Y., Sakai H., Takagi S. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines. Can. J. Vet. Res. 2016;80:209–216. PubMed PMC

Günther A., Baumann P., Burger R., Kellner C., Klapper W., Schmidmaier R., Gramatzki M. Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: A phase I study. Haematologica. 2015;100:541. doi: 10.3324/haematol.2014.116269. PubMed DOI PMC

Chen H., Huang S., Niu P., Zhu Y., Zhou J., Jiang L., Li D., Shi D. Cardamonin suppresses pro-tumor function of macrophages by decreasing M2 polarization on ovarian cancer cells via mTOR inhibition. Mol. Ther. Oncolytics. 2022;26:175–188. doi: 10.1016/j.omto.2022.06.009. PubMed DOI PMC

Bjornsti M.A., Houghton P.J. The TOR pathway: A target for cancer therapy. Nat. Rev. Cancer. 2004;4:335–348. doi: 10.1038/nrc1362. PubMed DOI

Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009;10:307–318. doi: 10.1038/nrm2672. PubMed DOI

Heo J.H., Park C., Ghosh S., Park S., Zivkovic M., Rascati K.L. A network meta-analysis of efficacy and safety of first-line and second-line therapies for the management of metastatic renal cell carcinoma. J. Clin. Pharm. Ther. 2021;46:35–49. doi: 10.1111/jcpt.13282. PubMed DOI

Farag S.S., Zhang S., Jansak B.S., Wang X., Kraut E., Chan K., Dancey J., Grever M. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk. Res. 2009;33:1475–1480. doi: 10.1016/j.leukres.2009.01.039. PubMed DOI PMC

Raje N., Kumar S., Hideshima T., Ishitsuka K., Chauhan D., Mitsiades C., Podar K., Le Gouill S., Richardson P., Munshi N.C., et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004;104:4188–4193. doi: 10.1182/blood-2004-06-2281. PubMed DOI

Walker B.A., Mavrommatis K., Wardell C.P., Ashby T.C., Bauer M., Davies F.E., Rosenthal A., Wang H., Qu P., Hoering A., et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood J. Am. Soc. Hematol. 2018;132:587–597. doi: 10.1182/blood-2018-03-840132. PubMed DOI PMC

Burotto M., Chiou V.L., Lee J., Kohn E.C. The MAPK pathway across different malignancies: A new perspective. Cancer. 2014;120:3446–3456. doi: 10.1002/cncr.28864. PubMed DOI PMC

Dhillon A.S., Hagan S., Rath O., Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–3290. doi: 10.1038/sj.onc.1210421. PubMed DOI

McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Wong E.W.T., Chang F., Lehmann B., Terrian D.M., Milella M., Tafuri A., et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2007;1773:1263–1284. doi: 10.1016/j.bbamcr.2006.10.001. PubMed DOI PMC

Jokinen E., Koivunen J.P. MEK and PI3K inhibition in solid tumors: Rationale and evidence to date. Ther. Adv. Med. Oncol. 2015;7:170–180. doi: 10.1177/1758834015571111. PubMed DOI PMC

Hoffner B., Benchich K. Trametinib: A targeted therapy in metastatic melanoma. J. Adv. Pract. Oncol. 2018;9:741. PubMed PMC

Malyutina A., Majumder M.M., Wang W., Pessia A., Heckman C.A., Tang J. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput. Biol. 2019;15:e1006752. doi: 10.1371/journal.pcbi.1006752. PubMed DOI PMC

Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953;3:285–290. PubMed

Di Veroli G.Y., Fornari C., Wang D., Mollard S., Bramhall J.L., Richards F.M., Jodrell D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics. 2016;32:2866–2868. doi: 10.1093/bioinformatics/btw230. PubMed DOI PMC

Pellat-Deceunynck C., Amiot M., Bataille R., Van Riet I., Van Camp B., Omede P., Boccadoro M. Human myeloma cell lines as a tool for studying the biology of multiple myeloma: A reappraisal 18 years after. Blood. 1995;86:4001–4002. doi: 10.1182/blood.V86.10.4001.bloodjournal86104001. PubMed DOI

Moreaux J., Klein B., Bataille R., Descamps G., Maïga S., Hose D., Goldschmidt H., Jauch A., Rème T., Jourdan M., et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica. 2011;96:574. doi: 10.3324/haematol.2010.033456. PubMed DOI PMC

Våtsveen T.K., Børset M., Dikic A., Tian E., Micci F., Lid A.H.B., Meza-Zepeda L.A., Coward E., Waage A., Sundan A., et al. VOLIN and KJON—Two novel hyperdiploid myeloma cell lines. Genes Chromosomes Cancer. 2016;55:890–901. doi: 10.1002/gcc.22388. PubMed DOI

Våtsveen T.K., Tian E., Kresse S.H., Meza-Zepeda L.A., Gabrea A., Glebov O., Dai H.Y., Sundan A., Kuehl W.M., Børset M. OH-2, a hyperdiploid myeloma cell line without an IGH translocation, has a complex translocation juxtaposing MYC near MAFB and the IGK locus. Leuk. Res. 2009;33:1670–1677. doi: 10.1016/j.leukres.2009.03.001. PubMed DOI PMC

Vikova V., Jourdan M., Robert N., Requirand G., Boireau S., Bruyer A., Vincent L., Cartron G., Klein B., Elemento O., et al. Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics. 2019;9:540. doi: 10.7150/thno.28374. PubMed DOI PMC

Davies B.R., Greenwood H., Dudley P., Crafter C., Yu D.H., Zhang J., Li J., Gao B., Ji Q., Maynard J., et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: Pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol. Cancer Ther. 2012;11:873–887. doi: 10.1158/1535-7163.MCT-11-0824-T. PubMed DOI

Munugalavadla V., Mariathasan S., Slaga D., Du C., Berry L., del Rosario G., Yan Y., Boe M., Sun L., Friedman L.S., et al. The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple myeloma. Oncogene. 2014;33:316–325. doi: 10.1038/onc.2012.594. PubMed DOI

Azab F., Vali S., Abraham J., Potter N., Muz B., de la Puente P., Fiala M., Paasch J., Sultana Z., Tyagi A., et al. PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. Br. J. Haematol. 2014;165:89–101. doi: 10.1111/bjh.12734. PubMed DOI

Kim J., Hong S., Hong S. Discovery of new aminopyrimidine-based phosphoinositide 3-kinase beta (PI3Kβ) inhibitors with selectivity over PI3Kα. Bioorg. Med. Chem. Lett. 2011;21:6977–6981. doi: 10.1016/j.bmcl.2011.09.118. PubMed DOI

Evans C.A., Liu T., Lescarbeau A., Nair S.J., Grenier L., Pradeilles J.A., Glenadel Q., Tibbitts T., Rowley A.M., DiNitto J.P., et al. Discovery of a selective phosphoinositide-3-kinase (PI3K)-γ inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett. 2016;7:862–867. doi: 10.1021/acsmedchemlett.6b00238. PubMed DOI PMC

Somoza J.R., Koditek D., Villaseñor A.G., Novikov N., Wong M.H., Liclican A., Xing W., Lagpacan L., Wang R., Schultz B.E., et al. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ. J. Biol. Chem. 2015;290:8439–8446. doi: 10.1074/jbc.M114.634683. PubMed DOI PMC

Barlaam B., Cosulich S., Degorce S., Fitzek M., Green S., Hancox U., Lambert-van der Brempt C., Lohmann J.J., Maudet M., Morgentin R., et al. Discovery of (R)-8-(1-(3, 5-Difluorophenylamino) ethyl)-N, N-dimethyl-2-morpholino-4-oxo-4 H-chromene-6-carboxamide (AZD8186): A Potent and Selective Inhibitor of PI3Kβ and PI3Kδ for the Treatment of PTEN-Deficient Cancers. J. Med. Chem. 2015;58:943–962. doi: 10.1021/jm501629p. PubMed DOI

Mody R., Naranjo A., van Ryn C., Alice L.Y., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Sondel P.M., et al. Irinotecan–temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): An open-label, randomised, phase 2 trial. Lancet Oncol. 2017;18:946–957. doi: 10.1016/S1470-2045(17)30355-8. PubMed DOI PMC

Mascarenhas L., Chi Y.Y., Hingorani P., Anderson J.R., Lyden E.R., Rodeberg D.A., Indelicato D.J., Kao S.C., Dasgupta R., Spunt S.L., et al. Randomized phase II trial of bevacizumab or temsirolimus in combination with chemotherapy for first relapse rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2019;37:2866. doi: 10.1200/JCO.19.00576. PubMed DOI PMC

Abe H., Kikuchi S., Hayakawa K., Iida T., Nagahashi N., Maeda K., Sakamoto J., Matsumoto N., Miura T., Matsumura K., et al. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate) ACS Med. Chem. Lett. 2011;2:320–324. doi: 10.1021/ml200004g. PubMed DOI PMC

Tanida I., Ueno T., Kominami E. LC3 and Autophagy. Autophagosome Phagosome. 2008;445:77–88. PubMed

Miotto G., Rossetto M., Di Paolo M.L., Orian L., Venerando R., Roveri A., Vučković A.M., Bosello Travain V., Zaccarin M., Zennaro L., et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox. Biol. 2020;28:101328. doi: 10.1016/j.redox.2019.101328. PubMed DOI PMC

Robiou-Du-Pont S., Cleynen A., Fontan C., Attal M., Munshi N., Corre J., Avet-Loiseau H. Genomics of multiple myeloma. J. Clin. Oncol. 2017;35:963–967. doi: 10.1200/JCO.2016.70.6705. PubMed DOI

Zheng Y., Yang J., Qian J., Zhang L., Lu Y., Li H., Lin H., Lan Y., Liu Z., He J., et al. Novel phosphatidylinositol 3-kinase inhibitor NVP-BKM120 induces apoptosis in myeloma cells and shows synergistic anti-myeloma activity with dexamethasone. J. Mol. Med. 2012;90:695–706. doi: 10.1007/s00109-011-0849-9. PubMed DOI PMC

Strömberg T., Dimberg A., Hammarberg A., Carlson K., Osterborg A., Nilsson K., Jernberg-Wiklund H. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood. 2004;103:3138–3147. doi: 10.1182/blood-2003-05-1543. PubMed DOI

Okabe S., Tanaka Y., Tauchi T., Ohyashiki K. Copanlisib, a novel phosphoinositide 3-kinase inhibitor, combined with carfilzomib inhibits multiple myeloma cell proliferation. Ann. Hematol. 2019;98:723–733. doi: 10.1007/s00277-018-3547-7. PubMed DOI

Shi Y., Gera J., Hu L., Hsu J., hsin Bookstein R., Li W., Lichtenstein A. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. 2002;62:5027–5034. PubMed

Yang H., Rudge D.G., Koos J.D., Vaidialingam B., Yang H.J., Pavletich N.P. mTOR kinase structure, mechanism and regulation. Nature. 2013;497:217–223. doi: 10.1038/nature12122. PubMed DOI PMC

Cuyàs E., Corominas-Faja B., Joven J., Menendez J.A. Cell Cycle Regulation by the Nutrient-Sensing Mammalian target of rapamycin (mTOR) pathway. Methods Mol. Biol. 2014;1170:113–144. PubMed

Medema R.H., Kops G.J.P.L., Bos J.L., Burgering B.M.T. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404:782–787. doi: 10.1038/35008115. PubMed DOI

Mendoza M.C., Er E.E., Blenis J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011;36:320–328. doi: 10.1016/j.tibs.2011.03.006. PubMed DOI PMC

Nazim U.M., Bishayee K., Kang J., Yoo D., Huh S.O., Sadra A. mTORC1-Inhibition Potentiating Metabolic Block by Tyrosine Kinase Inhibitor Ponatinib in Multiple Myeloma. Cancers. 2022;14:2766. doi: 10.3390/cancers14112766. PubMed DOI PMC

Yee A.J., Hari P., Marcheselli R., Mahindra A.K., Cirstea D.D., Scullen T.A., Burke J.N., Rodig S.J., Hideshima T., Laubach J.P., et al. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br. J. Haematol. 2014;166:401–409. doi: 10.1111/bjh.12909. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...