Combination Treatment Targeting mTOR and MAPK Pathways Has Synergistic Activity in Multiple Myeloma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DJCLS 17R/2018
José Carreras Leukämie Stiftung
70112392
Deutsche Krebshilfe
KH331/2-3
Deutsche Forschungsgemeinschaft
Kha2/002/20
the intramural funding of the Faculty of Medicine at University Hospital Münster
PubMed
37190302
PubMed Central
PMC10136620
DOI
10.3390/cancers15082373
PII: cancers15082373
Knihovny.cz E-zdroje
- Klíčová slova
- MEK, mTOR, multiple myeloma, targeted therapy, temsirolimus, trametinib,
- Publikační typ
- časopisecké články MeSH
Multiple myeloma (MM) is an incurable, malignant B cell disorder characterized by frequent relapses and a poor prognosis. Thus, new therapeutic approaches are warranted. The phosphatidylinositol-3-kinase (PI3K) pathway plays a key role in many critical cellular processes, including cell proliferation and survival. Activated PI3K/AKT (protein kinases B)/mTOR (mammalian target of rapamycin) signaling has been identified in MM primary patient samples and cell lines. In this study, the efficacy of PI3K and mTOR inhibitors in various MM cell lines representing three different prognostic subtypes was tested. Whereas MM cell lines were rather resistant to PI3K inhibition, treatment with the mTOR inhibitor temsirolimus decreases the phosphorylation of key molecules in the PI3K pathway in MM cell lines, leading to G0/G1 cell cycle arrest and thus reduced proliferation. Strikingly, the efficacy of temsirolimus was amplified by combining the treatment with the Mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. Our findings provide a scientific rationale for the simultaneous inhibition of mTOR and MEK as a novel strategy for the treatment of MM.
Zobrazit více v PubMed
Kristinsson S.Y., Landgren O., Dickman P.W., Derolf Å.R., Björkholm M. Patterns of survival in multiple myeloma: A population-based study of patients diagnosed in Sweden from 1973 to 2003. J. Clin. Oncol. 2007;25:1993–1999. doi: 10.1200/JCO.2006.09.0100. PubMed DOI
al Hamed R., Bazarbachi A.H., Malard F., Harousseau J.L., Mohty M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2019;9:44. doi: 10.1038/s41408-019-0205-9. PubMed DOI PMC
Pillarisetti K., Edavettal S., Mendonça M., Li Y., Tornetta M., Babich A., Majewski N., Husovsky M., Reeves D., Walsh E., et al. A T-cell–redirecting bispecific G-protein–coupled receptor class 5 member D × CD3 antibody to treat multiple myeloma. Blood. 2020;135:1232–1243. doi: 10.1182/blood.2019003342. PubMed DOI PMC
Ghosh A., Mailankody S., Giralt S.A., Landgren C.O., Smith E.L., Brentjens R.J. CAR T Cell Therapy for Multiple Myeloma: Where are We Now and Where are We Headed? Leukemia and Lymphoma. Volume 59. Taylor and Francis Ltd.; Abingdon, UK: 2018. pp. 2056–2067. PubMed PMC
Bianchi G., Anderson K.C. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J. Clin. 2014;64:422–444. doi: 10.3322/caac.21252. PubMed DOI
Rajkumar S.V., Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10:94. doi: 10.1038/s41408-020-00359-2. PubMed DOI PMC
Kaegi C., Wuest B., Schreiner J., Steiner U.C., Vultaggio A., Matucci A., Crowley C., Boyman O. Systematic review of safety and efficacy of rituximab in treating immune-mediated disorders. Front. Immunol. 2019;10:1990. doi: 10.3389/fimmu.2019.01990. PubMed DOI PMC
Marcus R., Davies A., Ando K., Klapper W., Opat S., Owen C., Phillips E., Sangha R., Schlag R., Seymour J.F., et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N. Engl. J. Med. 2017;377:1331–1344. doi: 10.1056/NEJMoa1614598. PubMed DOI
Qiang Y.W., Yao L., Tosato G., Rudikoff S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood. 2004;103:301–308. doi: 10.1182/blood-2003-06-2066. PubMed DOI
Engelman J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer. 2009;9:550–562. doi: 10.1038/nrc2664. PubMed DOI
Erdmann T., Klener P., Lynch J.T., Grau M., Vočková P., Molinsky J., Tuskova D., Hudson K., Polanska U.M., Grondine M., et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood J. Am. Soc. Hematol. 2017;130:310–322. doi: 10.1182/blood-2016-12-758599. PubMed DOI
Dreyling M., Santoro A., Mollica L., Leppä S., Follows G.A., Lenz G., Kim W.S., Nagler A., Panayiotidis P., Demeter J., et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J. Clin. Oncol. 2017;35:3898–3905. doi: 10.1200/JCO.2017.75.4648. PubMed DOI
Oki Y., Fanale M., Romaguera J., Fayad L., Fowler N., Copeland A., Samaniego F., Kwak L.W., Neelapu S., Wang M., et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br. J. Haematol. 2015;171:463–470. doi: 10.1111/bjh.13603. PubMed DOI PMC
Jhanwar-Uniyal M., Wainwright J.v., Mohan A.L., Tobias M.E., Murali R., Gandhi C.D., Schmidt M.H. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv. Biol. Regul. 2019;72:51–62. doi: 10.1016/j.jbior.2019.03.003. PubMed DOI
Adachi M., Hoshino Y., Izumi Y., Sakai H., Takagi S. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines. Can. J. Vet. Res. 2016;80:209–216. PubMed PMC
Günther A., Baumann P., Burger R., Kellner C., Klapper W., Schmidmaier R., Gramatzki M. Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: A phase I study. Haematologica. 2015;100:541. doi: 10.3324/haematol.2014.116269. PubMed DOI PMC
Chen H., Huang S., Niu P., Zhu Y., Zhou J., Jiang L., Li D., Shi D. Cardamonin suppresses pro-tumor function of macrophages by decreasing M2 polarization on ovarian cancer cells via mTOR inhibition. Mol. Ther. Oncolytics. 2022;26:175–188. doi: 10.1016/j.omto.2022.06.009. PubMed DOI PMC
Bjornsti M.A., Houghton P.J. The TOR pathway: A target for cancer therapy. Nat. Rev. Cancer. 2004;4:335–348. doi: 10.1038/nrc1362. PubMed DOI
Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009;10:307–318. doi: 10.1038/nrm2672. PubMed DOI
Heo J.H., Park C., Ghosh S., Park S., Zivkovic M., Rascati K.L. A network meta-analysis of efficacy and safety of first-line and second-line therapies for the management of metastatic renal cell carcinoma. J. Clin. Pharm. Ther. 2021;46:35–49. doi: 10.1111/jcpt.13282. PubMed DOI
Farag S.S., Zhang S., Jansak B.S., Wang X., Kraut E., Chan K., Dancey J., Grever M. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk. Res. 2009;33:1475–1480. doi: 10.1016/j.leukres.2009.01.039. PubMed DOI PMC
Raje N., Kumar S., Hideshima T., Ishitsuka K., Chauhan D., Mitsiades C., Podar K., Le Gouill S., Richardson P., Munshi N.C., et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood. 2004;104:4188–4193. doi: 10.1182/blood-2004-06-2281. PubMed DOI
Walker B.A., Mavrommatis K., Wardell C.P., Ashby T.C., Bauer M., Davies F.E., Rosenthal A., Wang H., Qu P., Hoering A., et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood J. Am. Soc. Hematol. 2018;132:587–597. doi: 10.1182/blood-2018-03-840132. PubMed DOI PMC
Burotto M., Chiou V.L., Lee J., Kohn E.C. The MAPK pathway across different malignancies: A new perspective. Cancer. 2014;120:3446–3456. doi: 10.1002/cncr.28864. PubMed DOI PMC
Dhillon A.S., Hagan S., Rath O., Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–3290. doi: 10.1038/sj.onc.1210421. PubMed DOI
McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Wong E.W.T., Chang F., Lehmann B., Terrian D.M., Milella M., Tafuri A., et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2007;1773:1263–1284. doi: 10.1016/j.bbamcr.2006.10.001. PubMed DOI PMC
Jokinen E., Koivunen J.P. MEK and PI3K inhibition in solid tumors: Rationale and evidence to date. Ther. Adv. Med. Oncol. 2015;7:170–180. doi: 10.1177/1758834015571111. PubMed DOI PMC
Hoffner B., Benchich K. Trametinib: A targeted therapy in metastatic melanoma. J. Adv. Pract. Oncol. 2018;9:741. PubMed PMC
Malyutina A., Majumder M.M., Wang W., Pessia A., Heckman C.A., Tang J. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput. Biol. 2019;15:e1006752. doi: 10.1371/journal.pcbi.1006752. PubMed DOI PMC
Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953;3:285–290. PubMed
Di Veroli G.Y., Fornari C., Wang D., Mollard S., Bramhall J.L., Richards F.M., Jodrell D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics. 2016;32:2866–2868. doi: 10.1093/bioinformatics/btw230. PubMed DOI PMC
Pellat-Deceunynck C., Amiot M., Bataille R., Van Riet I., Van Camp B., Omede P., Boccadoro M. Human myeloma cell lines as a tool for studying the biology of multiple myeloma: A reappraisal 18 years after. Blood. 1995;86:4001–4002. doi: 10.1182/blood.V86.10.4001.bloodjournal86104001. PubMed DOI
Moreaux J., Klein B., Bataille R., Descamps G., Maïga S., Hose D., Goldschmidt H., Jauch A., Rème T., Jourdan M., et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica. 2011;96:574. doi: 10.3324/haematol.2010.033456. PubMed DOI PMC
Våtsveen T.K., Børset M., Dikic A., Tian E., Micci F., Lid A.H.B., Meza-Zepeda L.A., Coward E., Waage A., Sundan A., et al. VOLIN and KJON—Two novel hyperdiploid myeloma cell lines. Genes Chromosomes Cancer. 2016;55:890–901. doi: 10.1002/gcc.22388. PubMed DOI
Våtsveen T.K., Tian E., Kresse S.H., Meza-Zepeda L.A., Gabrea A., Glebov O., Dai H.Y., Sundan A., Kuehl W.M., Børset M. OH-2, a hyperdiploid myeloma cell line without an IGH translocation, has a complex translocation juxtaposing MYC near MAFB and the IGK locus. Leuk. Res. 2009;33:1670–1677. doi: 10.1016/j.leukres.2009.03.001. PubMed DOI PMC
Vikova V., Jourdan M., Robert N., Requirand G., Boireau S., Bruyer A., Vincent L., Cartron G., Klein B., Elemento O., et al. Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics. 2019;9:540. doi: 10.7150/thno.28374. PubMed DOI PMC
Davies B.R., Greenwood H., Dudley P., Crafter C., Yu D.H., Zhang J., Li J., Gao B., Ji Q., Maynard J., et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: Pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol. Cancer Ther. 2012;11:873–887. doi: 10.1158/1535-7163.MCT-11-0824-T. PubMed DOI
Munugalavadla V., Mariathasan S., Slaga D., Du C., Berry L., del Rosario G., Yan Y., Boe M., Sun L., Friedman L.S., et al. The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple myeloma. Oncogene. 2014;33:316–325. doi: 10.1038/onc.2012.594. PubMed DOI
Azab F., Vali S., Abraham J., Potter N., Muz B., de la Puente P., Fiala M., Paasch J., Sultana Z., Tyagi A., et al. PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. Br. J. Haematol. 2014;165:89–101. doi: 10.1111/bjh.12734. PubMed DOI
Kim J., Hong S., Hong S. Discovery of new aminopyrimidine-based phosphoinositide 3-kinase beta (PI3Kβ) inhibitors with selectivity over PI3Kα. Bioorg. Med. Chem. Lett. 2011;21:6977–6981. doi: 10.1016/j.bmcl.2011.09.118. PubMed DOI
Evans C.A., Liu T., Lescarbeau A., Nair S.J., Grenier L., Pradeilles J.A., Glenadel Q., Tibbitts T., Rowley A.M., DiNitto J.P., et al. Discovery of a selective phosphoinositide-3-kinase (PI3K)-γ inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett. 2016;7:862–867. doi: 10.1021/acsmedchemlett.6b00238. PubMed DOI PMC
Somoza J.R., Koditek D., Villaseñor A.G., Novikov N., Wong M.H., Liclican A., Xing W., Lagpacan L., Wang R., Schultz B.E., et al. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ. J. Biol. Chem. 2015;290:8439–8446. doi: 10.1074/jbc.M114.634683. PubMed DOI PMC
Barlaam B., Cosulich S., Degorce S., Fitzek M., Green S., Hancox U., Lambert-van der Brempt C., Lohmann J.J., Maudet M., Morgentin R., et al. Discovery of (R)-8-(1-(3, 5-Difluorophenylamino) ethyl)-N, N-dimethyl-2-morpholino-4-oxo-4 H-chromene-6-carboxamide (AZD8186): A Potent and Selective Inhibitor of PI3Kβ and PI3Kδ for the Treatment of PTEN-Deficient Cancers. J. Med. Chem. 2015;58:943–962. doi: 10.1021/jm501629p. PubMed DOI
Mody R., Naranjo A., van Ryn C., Alice L.Y., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Sondel P.M., et al. Irinotecan–temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): An open-label, randomised, phase 2 trial. Lancet Oncol. 2017;18:946–957. doi: 10.1016/S1470-2045(17)30355-8. PubMed DOI PMC
Mascarenhas L., Chi Y.Y., Hingorani P., Anderson J.R., Lyden E.R., Rodeberg D.A., Indelicato D.J., Kao S.C., Dasgupta R., Spunt S.L., et al. Randomized phase II trial of bevacizumab or temsirolimus in combination with chemotherapy for first relapse rhabdomyosarcoma: A report from the Children’s Oncology Group. J. Clin. Oncol. 2019;37:2866. doi: 10.1200/JCO.19.00576. PubMed DOI PMC
Abe H., Kikuchi S., Hayakawa K., Iida T., Nagahashi N., Maeda K., Sakamoto J., Matsumoto N., Miura T., Matsumura K., et al. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate) ACS Med. Chem. Lett. 2011;2:320–324. doi: 10.1021/ml200004g. PubMed DOI PMC
Tanida I., Ueno T., Kominami E. LC3 and Autophagy. Autophagosome Phagosome. 2008;445:77–88. PubMed
Miotto G., Rossetto M., Di Paolo M.L., Orian L., Venerando R., Roveri A., Vučković A.M., Bosello Travain V., Zaccarin M., Zennaro L., et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox. Biol. 2020;28:101328. doi: 10.1016/j.redox.2019.101328. PubMed DOI PMC
Robiou-Du-Pont S., Cleynen A., Fontan C., Attal M., Munshi N., Corre J., Avet-Loiseau H. Genomics of multiple myeloma. J. Clin. Oncol. 2017;35:963–967. doi: 10.1200/JCO.2016.70.6705. PubMed DOI
Zheng Y., Yang J., Qian J., Zhang L., Lu Y., Li H., Lin H., Lan Y., Liu Z., He J., et al. Novel phosphatidylinositol 3-kinase inhibitor NVP-BKM120 induces apoptosis in myeloma cells and shows synergistic anti-myeloma activity with dexamethasone. J. Mol. Med. 2012;90:695–706. doi: 10.1007/s00109-011-0849-9. PubMed DOI PMC
Strömberg T., Dimberg A., Hammarberg A., Carlson K., Osterborg A., Nilsson K., Jernberg-Wiklund H. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood. 2004;103:3138–3147. doi: 10.1182/blood-2003-05-1543. PubMed DOI
Okabe S., Tanaka Y., Tauchi T., Ohyashiki K. Copanlisib, a novel phosphoinositide 3-kinase inhibitor, combined with carfilzomib inhibits multiple myeloma cell proliferation. Ann. Hematol. 2019;98:723–733. doi: 10.1007/s00277-018-3547-7. PubMed DOI
Shi Y., Gera J., Hu L., Hsu J., hsin Bookstein R., Li W., Lichtenstein A. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. 2002;62:5027–5034. PubMed
Yang H., Rudge D.G., Koos J.D., Vaidialingam B., Yang H.J., Pavletich N.P. mTOR kinase structure, mechanism and regulation. Nature. 2013;497:217–223. doi: 10.1038/nature12122. PubMed DOI PMC
Cuyàs E., Corominas-Faja B., Joven J., Menendez J.A. Cell Cycle Regulation by the Nutrient-Sensing Mammalian target of rapamycin (mTOR) pathway. Methods Mol. Biol. 2014;1170:113–144. PubMed
Medema R.H., Kops G.J.P.L., Bos J.L., Burgering B.M.T. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404:782–787. doi: 10.1038/35008115. PubMed DOI
Mendoza M.C., Er E.E., Blenis J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011;36:320–328. doi: 10.1016/j.tibs.2011.03.006. PubMed DOI PMC
Nazim U.M., Bishayee K., Kang J., Yoo D., Huh S.O., Sadra A. mTORC1-Inhibition Potentiating Metabolic Block by Tyrosine Kinase Inhibitor Ponatinib in Multiple Myeloma. Cancers. 2022;14:2766. doi: 10.3390/cancers14112766. PubMed DOI PMC
Yee A.J., Hari P., Marcheselli R., Mahindra A.K., Cirstea D.D., Scullen T.A., Burke J.N., Rodig S.J., Hideshima T., Laubach J.P., et al. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br. J. Haematol. 2014;166:401–409. doi: 10.1111/bjh.12909. PubMed DOI