EDTA as a legacy soil chelatant: a comparative study to a more environmentally sensitive alternative for metal removal by Pistia stratiotes L
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008403
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
37202639
PubMed Central
PMC10287577
DOI
10.1007/s11356-023-27537-6
PII: 10.1007/s11356-023-27537-6
Knihovny.cz E-zdroje
- Klíčová slova
- DOC leaching, Metal speciation modeling, Rhizofiltration, Soil chelatants, Water lettuce,
- MeSH
- Araceae * MeSH
- biodegradace MeSH
- EDTA chemie MeSH
- kadmium MeSH
- látky znečišťující půdu * analýza MeSH
- půda chemie MeSH
- tartaráty MeSH
- těžké kovy * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- EDTA MeSH
- kadmium MeSH
- látky znečišťující půdu * MeSH
- půda MeSH
- tartaráty MeSH
- tartaric acid MeSH Prohlížeč
- těžké kovy * MeSH
The accuracy of environmental risk assessment depends upon selecting appropriate matrices to extract the most risk-relevant portion of contaminant(s) from the soil. Here, we applied the chelatants EDTA and tartaric acid to extract a metal-contaminated soil. Pistia stratiotes was applied as an indicator plant to measure accumulation from the metal-laden bulk solutions generated, in a hydroponic experiment lasting 15 days. Speciation modeling was used to elucidate key geo-chemical mechanisms impacting matrix and metal-specific uptake revealed by experimental work. The highest concentrations of soil-borne metals were extracted from soil by EDTA (7.4% for Cd), but their uptake and translocation to the plant were restricted due to the formation of stable metal complexes predominantly with DOC. Tartaric acid solubilized metals to a lesser extent (4.6% for Cd), but a higher proportion was plant available due to its presence mainly in the form of bivalent metal cations. The water extraction showed the lowest metal extraction (e.g., 3.9% for Cd), but the metal species behaved similarly to those extracted by tartaric acid. This study demonstrates that not all extractions are equal and that metal-specific speciation will impact accurate risk assessment in soil (water)-plant systems. In the case of EDTA, a deleterious impact on DOC leaching is an obvious drawback. As such, further work should now determine soil and not only metal-specific impacts of chelatants on the extraction of environmentally relevant portions of metal(loid)s.
Zobrazit více v PubMed
Ali S, Abbas Z, Rizwan M, et al. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustain. 2020;12:1927. doi: 10.3390/su12051927. DOI
Awa SH, Hadibarata T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut. 2020;231:47. doi: 10.1007/s11270-020-4426-0. DOI
Bedabati Chanu L, Gupta A. Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere. 2016;156:407–411. doi: 10.1016/j.chemosphere.2016.05.001. PubMed DOI
Bunluesin S, Pokethitiyook P, Lanza GR, et al. Influences of cadmium and zinc interaction and humic acid on metal accumulation in Ceratophyllum demersum. Water Air Soil Pollut. 2007;180:225–235. doi: 10.1007/s11270-006-9265-0. DOI
Chen J-C, Wang K-S, Chen H, et al. Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: effects of Cr speciation. Bioresour Technol. 2010;101:3033–3039. doi: 10.1016/j.biortech.2009.12.041. PubMed DOI
Das S, Goswami S, Talukdar AD. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bull Environ Contam Toxicol. 2014;92:169–174. doi: 10.1007/s00128-013-1152-y. PubMed DOI
de Santiago-Martín A, Valverde-Asenjo I, Quintana JR, et al. Metal extractability patterns to evaluate (potentially) mobile fractions in periurban calcareous agricultural soils in the Mediterranean area—analytical and mineralogical approaches. Environ Sci Pollut Res. 2013;20:6392–6405. doi: 10.1007/s11356-013-1684-z. PubMed DOI
do Nascimento CWA, Amarasiriwardena D, Xing B. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut. 2006;140:114–123. doi: 10.1016/j.envpol.2005.06.017. PubMed DOI
Evangelou MWH, Ebel M, Schaeffer A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere. 2006;63:996–1004. doi: 10.1016/j.chemosphere.2005.08.042. PubMed DOI
Galal TM, Eid EM, Dakhil MA, Hassan LM. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediation. 2018;20:440–447. doi: 10.1080/15226514.2017.1365343. PubMed DOI
Haddad MN, Al-Jada MA. Accumulation and combined effect of salinity and heavy metals on growth, yield and uptake of green pea grown in piped hydroponics. European J Agric Food Sci. 2021;3:110–116. doi: 10.24018/ejfood.2021.3.6.424. DOI
Haoliang L, Chongling Y, Jingchun L. Low-molecular-weight organic acids exuded by mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ Exp Bot. 2007;61:159–166. doi: 10.1016/j.envexpbot.2007.05.007. DOI
Hasan MM, Uddin MN, Ara-Sharmeen I, et al. Assisting phytoremediation of heavy metals using chemical amendments. Plants. 2019;8:295. doi: 10.3390/plants8090295. PubMed DOI PMC
Jelusic M, Lestan D. Effect of EDTA washing of metal polluted garden soils. Part I: toxicity hazards and impact on soil properties. Sci Total Environ. 2014;475:132–141. doi: 10.1016/j.scitotenv.2013.11.049. PubMed DOI
Kabata-Pendias A. Soil–plant transfer of trace elements—an environmental issue. Geoderma. 2004;122:143–149. doi: 10.1016/j.geoderma.2004.01.004. DOI
Kidd P, Barceló J, Bernal MP, et al. Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot. 2009;67:243–259. doi: 10.1016/j.envexpbot.2009.06.013. DOI
Kumar V, Pandita S, Singh Sidhu GP, et al. Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere. 2021;262:127810. doi: 10.1016/j.chemosphere.2020.127810. PubMed DOI
Kumar V, Singh J, Kumar P. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Environ Sci Pollut Res. 2019;26:14400–14413. doi: 10.1007/s11356-019-04766-2. PubMed DOI
Lambrechts T, Gustot Q, Couder E, et al. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Chemosphere. 2011;85:1290–1298. doi: 10.1016/j.chemosphere.2011.07.034. PubMed DOI
Liu D, Islam E, Li T, et al. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. J Hazard Mater. 2008;153:114–122. doi: 10.1016/j.jhazmat.2007.08.026. PubMed DOI
Liu J, Zhao L, Liu Q, et al. A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int J Environ Sci Technol. 2022;19:601–624. doi: 10.1007/s13762-021-03144-1. DOI
Lu L, Tian S, Yang X, et al. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid. J Zhejiang Univ Sci B. 2013;14:106–114. doi: 10.1631/jzus.B1200211. PubMed DOI PMC
Lu Q, He ZL, Graetz DA, et al. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.) Environ Sci Pollut Res. 2011;18:978–986. doi: 10.1007/s11356-011-0453-0. PubMed DOI
Macfie SM, Welbourn PM. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae) Arch Environ Contam Toxicol. 2000;39:413–419. doi: 10.1007/s002440010122. PubMed DOI
Michálková Z, Komárek M, Vítková M, et al. Stability, transformations and stabilizing potential of an amorphous manganese oxide and its surface-modified form in contaminated soils. Appl Geochemistry. 2016;75:125–136. doi: 10.1016/j.apgeochem.2016.10.020. DOI
Moreno-Jiménez E, Beesley L, Lepp NW, et al. Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk. Environ Pollut. 2011;159:3078–3085. doi: 10.1016/j.envpol.2011.04.004. PubMed DOI
Ondrasek G, Rengel Z, Romic D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol Environ Saf. 2018;151:55–61. doi: 10.1016/j.ecoenv.2017.12.055. PubMed DOI
Rezapour S, Atashpaz B, Moghaddam SS, et al. Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L.) system. Chemosphere. 2019;231:579–587. doi: 10.1016/j.chemosphere.2019.05.095. PubMed DOI
Rong Q, Zhong K, Huang H, et al. Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco. Appl Sci. 2020;10:1077. doi: 10.3390/app10031077. DOI
Şentürk İ, Eyceyurt Divarcı NS, Öztürk M. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes) Int J Phytoremediation. 2023;25:550–561. doi: 10.1080/15226514.2022.2092063. PubMed DOI
Shabbir Z, Sardar A, Shabbir A, et al. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. 2020;259:127436. doi: 10.1016/j.chemosphere.2020.127436. PubMed DOI
Shahid M, Dumat C, Pourrut B, et al. Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor. 2014;144:290–297. doi: 10.1016/j.gexplo.2014.01.003. DOI
Shahid M, Dumat C, Pourrut B, et al. Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments. 2014;14:835–843. doi: 10.1007/s11368-013-0724-0. DOI
Shahid M, Pinelli E, Pourrut B, et al. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf. 2011;74:78–84. doi: 10.1016/j.ecoenv.2010.08.037. PubMed DOI
Shamshad S, Shahid M, Rafiq M, et al. Effect of organic amendments on cadmium stress to pea: a multivariate comparison of germinating vs young seedlings and younger vs older leaves. Ecotoxicol Environ Saf. 2018;151:91–97. doi: 10.1016/j.ecoenv.2018.01.002. PubMed DOI
Sherbeny GAE, El-Shehaby OA, Mohsin II. Ecological study and morphological variation of Pistia stratiotes in the North Eastern section of the Nile Delta, Egypt. J Environ Sci. 2015;44:31–45.
Singh J, Kumar V, Kumar P, et al. An experimental investigation on phytoremediation performance of water lettuce (Pistia stratiotes L.) for pollutants removal from paper mill effluent. Water Environ Res. 2021;93:1543–1553. doi: 10.1002/wer.1536. PubMed DOI
Tang KHD, Awa SH, Hadibarata T. Phytoremediation of copper-contaminated water with Pistia stratiotes in surface and distilled water. Water Air Soil Pollut. 2020;231:573. doi: 10.1007/s11270-020-04937-9. DOI
Tao Q, Zhao J, Li J, et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii. Journal of Hazardous Materials. 2020;383:121177. doi: 10.1016/j.jhazmat.2019.121177. PubMed DOI
Teodoro M, Trakal L, Gallagher BN, et al. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere. 2020;242:125255. doi: 10.1016/j.chemosphere.2019.125255. PubMed DOI
Trakal L, Komárek M, Száková J, et al. Biochar application to metal-contaminated soil: evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant Soil Environ. 2011;57:372–380. doi: 10.17221/155/2011-PSE. DOI
Veselý T, Tlustoš P, Száková J. The use of water lettuce ( Pistia Stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Int J Phytoremediation. 2011;13:859–872. doi: 10.1080/15226514.2011.560214. PubMed DOI
Veselý T, Tlustoš P, Száková J. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce ( Pistia Stratiotes L.) in the rhizofiltration process. Int J Phytoremediation. 2012;14:335–349. doi: 10.1080/15226514.2011.620650. PubMed DOI
Veselý T, Trakal L, Neuberg M, et al. Removal of Al, Fe and Mn by Pistia stratiotes L. and its stress response. Cent Eur J Biol. 2012;7:1037–1045. doi: 10.2478/s11535-012-0099-z. DOI
Wang K-S, Huang L-C, Lee H-S, et al. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere. 2008;72:666–672. doi: 10.1016/j.chemosphere.2008.03.034. PubMed DOI
Wei Z, Zhongbing C, Xiuqin Y, et al. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in Pistia stratiotes under Cd stress. J Hazard Mater. 2023;452:131214. doi: 10.1016/j.jhazmat.2023.131214. PubMed DOI
Xie P, Zahoor F, Iqbal SS, et al. Elimination of toxic heavy metals from industrial polluted water by using hydrophytes. J Clean Prod. 2022;352:131358. doi: 10.1016/j.jclepro.2022.131358. DOI
Yang Y, Ratté D, Smets BF, et al. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere. 2001;43:1013–1021. doi: 10.1016/S0045-6535(00)00498-7. PubMed DOI
Yuan S, Xi Z, Jiang Y, et al. Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere. 2007;68:1289–1297. doi: 10.1016/j.chemosphere.2007.01.046. PubMed DOI
Zhang T, Wu Y-X, Huang X-F, et al. Simultaneous extraction of Cr(VI) and Cu(II) from humic acid with new synthesized EDTA derivatives. Chemosphere. 2012;88:730–735. doi: 10.1016/j.chemosphere.2012.04.003. PubMed DOI
Zhang W, Huang H, Tan F, et al. Influence of EDTA washing on the species and mobility of heavy metals residual in soils. J Hazard Mater. 2010;173:369–376. doi: 10.1016/j.jhazmat.2009.08.087. PubMed DOI