Cerebrovascular Phenotype in Fabry Disease Patients Assessed by Ultrasound
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
ProjectNo.LX22NPO5107
The project National Institute for Neurological Research, Programme EXCELES, European Union-Next Generation EU
Charles University: Cooperatio Program in Neuroscience
General University Hospital in Prague project MH CZ-DRO-VFN64165
PubMed
37209359
DOI
10.1002/jum.16254
Knihovny.cz E-resources
- Keywords
- Fabry disease, breath-holding index, cerebral blood flow, cerebral vasoreactivity, intima-media thickness, pulsatility index,
- MeSH
- Fabry Disease * diagnostic imaging MeSH
- Hemodynamics physiology MeSH
- Carotid Intima-Media Thickness MeSH
- Humans MeSH
- Cerebrovascular Circulation physiology MeSH
- Cross-Sectional Studies MeSH
- Blood Flow Velocity physiology MeSH
- Ultrasonography, Doppler, Transcranial methods MeSH
- Ultrasonography MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
OBJECTIVES: Fabry disease (FD) is a rare X-linked lysosomal storage disorder with variable phenotypes, including neurological symptoms. These can be influenced by vascular impairment. Extracranial and transcranial vascular sonography is an effective and noninvasive method for measuring arterial structures and blood flow. The study aims to investigate cerebrovascular phenotype characteristics in FD patients compared to controls using neurosonology. METHODS: This is a single-center, cross-sectional study of 130 subjects-65 patients (38 females), with genetically confirmed FD, and 65 sex- and age-matched controls. Using ultrasonography, we measured structural and hemodynamic parameters, including distal common carotid artery intima-media thickness, inner vertebral artery diameter, resting blood flow velocity, pulsatility index, and cerebral vasoreactivity (CVR) in the middle cerebral artery. To assess differences between FD and controls and to identify factors influencing investigated outcomes, unadjusted and adjusted regression analyses were performed. RESULTS: In comparison to sex- and age-matched controls, FD patients displayed significantly increased carotid artery intima-media thickness (observed FD 0.69 ± 0.13 mm versus controls 0.63 ± 0.12 mm; Padj = .0014), vertebral artery diameter (observed FD 3.59 ± 0.35 mm versus controls 3.38 ± 0.33 mm; Padj = .0002), middle cerebral artery pulsatility index (observed FD 0.98 ± 0.19 versus controls 0.87 ± 0.11; Padj < .0001), and significantly decreased CVR (observed FD 1.21 ± 0.49 versus controls 1.35 ± 0.38; Padj = .0409), when adjusted by age, BMI, and sex. Additionally, FD patients had significantly more variable CVR (0.48 ± 0.25 versus 0.21 ± 0.14; Padj < .0001). CONCLUSIONS: Our results suggest the presence of multiple vascular abnormalities and changes in hemodynamic parameters of cerebral arteries in patients with FD.
See more in PubMed
Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L. Enzymatic defect in Fabry's disease. Ceramidetrihexosidase deficiency. N Engl J Med 1967; 276:1163-1167. https://doi.org/10.1056/nejm196705252762101.
Germain DP. Fabry disease. Orphanet J Rare Dis 2010; 5:30. https://doi.org/10.1186/1750-1172-5-30.
Sweeley CC, Klionsky B. Fabry's disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J Biol Chem 1963; 238:3148-3150.
Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke 2009; 40:788-794. https://doi.org/10.1161/strokeaha.108.526293.
Tomek A, Reková P, Paulasová Schwabová J, et al. Nationwide screening for Fabry disease in unselected stroke patients. PLoS One 2021; 16:e0260601. https://doi.org/10.1371/journal.pone.0260601.
Barbey F, Brakch N, Linhart A, et al. Increased carotid intima-media thickness in the absence of atherosclerotic plaques in an adult population with Fabry disease. Acta Paediatr Suppl 2006; 95:63-68. https://doi.org/10.1080/08035320600618924.
Kalliokoski RJ, Kalliokoski KK, Penttinen M, et al. Structural and functional changes in peripheral vasculature of Fabry patients. J Inherit Metab Dis 2006; 29:660-666. https://doi.org/10.1007/s10545-006-0340-x.
Moore DF, Altarescu G, Herscovitch P, Schiffmann R. Enzyme replacement reverses abnormal cerebrovascular responses in Fabry disease. BMC Neurol 2002; 2:4. https://doi.org/10.1186/1471-2377-2-4.
Manara R, Carlier RY, Righetto S, et al. Basilar artery changes in Fabry disease. AJNR Am J Neuroradiol 2017; 38:531-536. https://doi.org/10.3174/ajnr.A5069.
Bartels E, Fuchs HH, Flügel KA. Color Doppler imaging of basal cerebral arteries: normal reference values and clinical applications. Angiology 1995; 46:877-884. https://doi.org/10.1177/000331979504601002.
Silvestrini M, Vernieri F, Pasqualetti P, et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 2000; 283:2122-2127. https://doi.org/10.1001/jama.283.16.2122.
Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 2001; 124:457-467. https://doi.org/10.1093/brain/124.3.457.
Shim Y, Yoon B, Shim DS, Kim W, An JY, Yang DW. Cognitive correlates of cerebral vasoreactivity on transcranial Doppler in older adults. J Stroke Cerebrovasc Dis 2015; 24:1262-1269. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.01.031.
Tomek A, Urbanová B, Magerová H, et al. Neurosonological markers predicting cognitive deterioration. Cesk Slov Neurol N 2017; 80:409-417. https://doi.org/10.14735/amcsnn201740.
Urbanova BS, Schwabova JP, Magerova H, et al. Reduced cerebrovascular reserve capacity as a biomarker of microangiopathy in Alzheimer's disease and mild cognitive impairment. J Alzheimers Dis 2018; 63:465-477. https://doi.org/10.3233/jad-170815.
Diomedi M, Rocco A, Bonomi CG, et al. Haemodynamic impairment along the Alzheimer's disease continuum. Eur J Neurol 2021; 28:2168-2173. https://doi.org/10.1111/ene.14834.
Silvestrini M, Cupini LM, Troisi E, Matteis M, Bernardi G. Estimation of cerebrovascular reactivity in migraine without aura. Stroke 1995; 26:81-83. https://doi.org/10.1161/01.str.26.1.81.
Fiermonte G, Annulli A, Pierelli F. Transcranial Doppler evaluation of cerebral hemodynamics in migraineurs during prophylactic treatment with flunarizine. Cephalalgia 1999; 19:492-496. https://doi.org/10.1046/j.1468-2982.1999.019005492.x.
Akgün H, Taşdemir S, Üh U, et al. Reduced breath holding index in patients with chronic migraine. Acta Neurol Belg 2015; 115:323-327. https://doi.org/10.1007/s13760-014-0375-y.
Rob D, Marek J, Dostalova G, Linhart A. Heart failure in Fabry disease revisited: application of current heart failure guidelines and recommendations. ESC Heart Fail 2022; 9:4043-4052. https://doi.org/10.1002/ehf2.14091.
Školoudík D, Václavík D. Transkraniální barevná duplexní sonografie-národní standard vyšetřovací metodiky. Cesk Slov Neurol N 2002; 1:18-21.
Touboul P, Hennerici M, Meairs S, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). Cerebrovasc Dis 2012; 34:290-296.
Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 1974; 67(6 Pt 1):447-449.
StataCorp. Stata Statistical Software: Release 17. College Station, TX: StataCorp; 2021.
van den Munckhof ICL, Jones H, Hopman MTE, et al. Relation between age and carotid artery intima-medial thickness: a systematic review. Clin Cardiol 2018; 41:698-704. https://doi.org/10.1002/clc.22934.
Boutouyrie P, Laurent S, Laloux B, Lidove O, Grunfeld JP, Germain DP. Arterial remodelling in Fabry disease. Acta Paediatr Suppl 2002; 91:62-66. https://doi.org/10.1111/j.1651-2227.2002.tb03113.x.
Rombach SM, van den Bogaard B, de Groot E, et al. Vascular aspects of Fabry disease in relation to clinical manifestations and elevations in plasma globotriaosylsphingosine. Hypertension 2012; 60:998-1005. https://doi.org/10.1161/hypertensionaha.112.195685.
Roy A, Umar H, Ochoa-Ferraro A, et al. Atherosclerosis in Fabry disease-a contemporary review. J Clin Med 2021; 10:4422. https://doi.org/10.3390/jcm10194422.
Fellgiebel A, Keller I, Marin D, et al. Diagnostic utility of different MRI and MR angiography measures in Fabry disease. Neurology 2009; 72:63-68. https://doi.org/10.1212/01.wnl.0000338566.54190.8a.
Fellgiebel A, Keller I, Martus P, et al. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. Cerebrovasc Dis 2011; 31:294-299. https://doi.org/10.1159/000322558.
Uçeyler N, Homola GA, Guerrero González H, et al. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS One 2014; 9:e87054. https://doi.org/10.1371/journal.pone.0087054.
Vujkovac AC, Vujkovac B, Novaković S, Števanec M, Šabovič M. Characteristics of vascular phenotype in Fabry patients. Angiology 2021; 72:426-433. https://doi.org/10.1177/0003319720981521.
Hilz MJ, Kolodny EH, Brys M, Stemper B, Haendl T, Marthol H. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease. J Neurol 2004; 251:564-570. https://doi.org/10.1007/s00415-004-0364-9.
Segura T, Ayo-Martín O, Gómez-Fernandez I, Andrés C, Barba MA, Vivancos J. Cerebral hemodynamics and endothelial function in patients with Fabry disease. BMC Neurol 2013; 13:170. https://doi.org/10.1186/1471-2377-13-170.
Uçeyler N, He L, Kahn AK, Breunig F, Müllges W, Sommer C. Cerebral blood flow in patients with Fabry disease as measured by Doppler sonography is not different from that in healthy individuals and is unaffected by treatment. J Ultrasound Med 2012; 31:463-468. https://doi.org/10.7863/jum.2012.31.3.463.
Peisker T, Bartoš A, Skoda O, Ibrahim I, Kalvach P. Impact of aging on cerebral vasoregulation and parenchymal integrity. J Neurol Sci 2010; 299:112-115. https://doi.org/10.1016/j.jns.2010.08.064.
Bertsch K, Hagemann D, Hermes M, Walter C, Khan R, Naumann E. Resting cerebral blood flow, attention, and aging. Brain Res 2009; 1267:77-88. https://doi.org/10.1016/j.brainres.2009.02.053.
Alwatban MR, Aaron SE, Kaufman CS, et al. Effects of age and sex on middle cerebral artery blood velocity and flow pulsatility index across the adult lifespan. J Appl Physiol 2021; 130:1675-1683. https://doi.org/10.1152/japplphysiol.00926.2020.
Eicke BM, von Schlichting J, Mohr-Ahaly S, et al. Lack of association between carotid artery volume blood flow and cardiac output. J Ultrasound Med 2001; 20:1293-1298. https://doi.org/10.7863/jum.2001.20.12.1293.
Henriksen OM, Jensen LT, Krabbe K, Larsson HB, Rostrup E. Relationship between cardiac function and resting cerebral blood flow: MRI measurements in healthy elderly subjects. Clin Physiol Funct Imaging 2014; 34:471-477. https://doi.org/10.1111/cpf.12119.
Markus HS, Harrison MJ. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 1992; 23:668-673. https://doi.org/10.1161/01.str.23.5.668.
Castro P, Gutierres M, Pereira G, Ferreira S, Oliveira JP, Azevedo E. Evaluation of cerebral microvascular regulatory mechanisms with transcranial doppler in Fabry disease. Brain Sci 2020; 10:528. https://doi.org/10.3390/brainsci10080528.
Shu L, Park JL, Byun J, Pennathur S, Kollmeyer J, Shayman JA. Decreased nitric oxide bioavailability in a mouse model of Fabry disease. J Am Soc Nephrol 2009; 20:1975-1985. https://doi.org/10.1681/asn.2008111190.
Meng XL, Arning E, Wight-Carter M, et al. Priapism in a Fabry disease mouse model is associated with upregulated penile nNOS and eNOS expression. J Inherit Metab Dis 2018; 41:231-238. https://doi.org/10.1007/s10545-017-0107-6.
Grgic I, Kaistha BP, Hoyer J, Köhler R. Endothelial Ca+−activated K+ channels in normal and impaired EDHF-dilator responses-relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 2009; 157:509-526. https://doi.org/10.1111/j.1476-5381.2009.00132.x.
Park S, Kim JA, Joo KY, et al. Globotriaosylceramide leads to K(Ca)3.1 channel dysfunction: a new insight into endothelial dysfunction in Fabry disease. Cardiovasc Res 2011; 89:290-299. https://doi.org/10.1093/cvr/cvq333.
Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 2008; 105:2812-2817. https://doi.org/10.1073/pnas.0712309105.
Barbey F, Brakch N, Linhart A, et al. Cardiac and vascular hypertrophy in Fabry disease: evidence for a new mechanism independent of blood pressure and glycosphingolipid deposition. Arterioscler Thromb Vasc Biol 2006; 26:839-844. https://doi.org/10.1161/01.Atv.0000209649.60409.38.
Przybyłowski T, Bangash MF, Reichmuth K, Morgan BJ, Skatrud JB, Dempsey JA. Mechanisms of the cerebrovascular response to apnoea in humans. J Physiol 2003; 548(Pt 1):323-332. https://doi.org/10.1113/jphysiol.2002.029678.
Kešnerová P, Školoudík D, Herzig R, Netuka D, Szegedi I, Langová K. Peripheral vascular resistance in cerebral arteries in patients with carotid atherosclerosis-substudy results of the atherosclerotic plaque characteristics associated with a progression rate of the plaque and a risk of stroke in patients with the carotid bifurcation plaque study (ANTIQUE). J Ultrasound Med 2022; 41:237-246. https://doi.org/10.1002/jum.15703.
Kidwell CS, el-Saden S, Livshits Z, Martin NA, Glenn TC, Saver JL. Transcranial Doppler pulsatility indices as a measure of diffuse small-vessel disease. J Neuroimaging 2001; 11:229-235. https://doi.org/10.1111/j.1552-6569.2001.tb00039.x.
Mok V, Ding D, Fu J, et al. Transcranial Doppler ultrasound for screening cerebral small vessel disease: a community study. Stroke 2012; 43:2791-2793. https://doi.org/10.1161/strokeaha.112.665711.
Nam KW, Kwon HM, Lee YS. Distinct association between cerebral arterial pulsatility and subtypes of cerebral small vessel disease. PLoS One 2020; 15:e0236049. https://doi.org/10.1371/journal.pone.0236049.
Climie RE, Gallo A, Picone DS, et al. Measuring the interaction between the macro- and micro-vasculature. Front Cardiovasc Med 2019; 6:169. https://doi.org/10.3389/fcvm.2019.00169.