Downsizing the Channel Length of Vertical Organic Electrochemical Transistors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37216209
PubMed Central
PMC10251347
DOI
10.1021/acsami.3c02049
Knihovny.cz E-zdroje
- Klíčová slova
- PEDOT, electrochemical polymerization, microfabrication, vertical organic electrochemical transistor,
- Publikační typ
- časopisecké články MeSH
Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as sensors and neural interfaces. While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization. We describe the fabrication of such transistors using two types of conducting polymers. First, commercial solution-processed poly(dioxyethylenethiophene):poly(styrene sulfonate), PEDOT:PSS. Next, we also exploit the short channel length to support easy in situ electropolymerization of poly(dioxyethylenethiophene):tetrabutyl ammonium hexafluorophosphate, PEDOT:PF6. Both variants show different promising features, leading the way in terms of transconductance (gm), with the measured peak gm up to 68 mS for relatively thin (280 nm) channel layers on devices with the channel length of 350 nm and with widths of 50, 100, and 200 μm. This result suggests that the use of electropolymerized semiconductors, which can be easily customized, is viable with vertical geometry, as uniform and thin layers can be created. Spin-coated PEDOT:PSS lags behind with the lower values of gm; however, it excels in terms of the speed of the device and also has a comparably lower off current (300 nA), leading to unusually high on/off ratio, with values up to 8.6 × 104. Our approach to vertical gap devices is simple, scalable, and can be extended to other applications where small electrochemical channels are desired.
Czech Metrology Institute 638 00 Brno Czech Republic
Institute of Scientific Instruments of the CAS Královopolská 147 61264 Brno Czech Republic
Zobrazit více v PubMed
Kleemann H.; Krechan K.; Fischer A.; Leo K.; Kleemann H.; Krechan K.; Fischer A.; Leo K. A Review of Vertical Organic Transistors. Adv. Funct. Mater. 2020, 30, 190711310.1002/ADFM.201907113. DOI
Liu K.; Ouyang B.; Guo X.; Guo Y.; Liu Y. Advances in Flexible Organic Field-Effect Transistors and Their Applications for Flexible Electronics. npj Flexible Electron. 2022, 6, 1–19. 10.1038/s41528-022-00133-3. DOI
Gelinck G. H.; Huitema H. E. A.; van Veenendaal E.; Cantatore E.; Schrijnemakers L.; van der Putten J. B. P. H.; Geuns T. C. T.; Beenhakkers M.; Giesbers J. B.; Huisman B. H.; Meijer E. J.; Benito E. M.; Touwslager F. J.; Marsman A. W.; van Rens B. J. E.; de Leeuw D. M. Flexible Active-Matrix Displays and Shift Registers Based on Solution-Processed Organic Transistors. Nat. Mater. 2004, 3, 106–110. 10.1038/nmat1061. PubMed DOI
Rivnay J.; Inal S.; Salleo A.; Owens R. M.; Berggren M.; Malliaras G. G. Organic Electrochemical Transistors. Nat. Rev. Mater. 2018, 3, 1–14. 10.1038/natrevmats.2017.86. DOI
Rivnay J.; Owens R. M.; Malliaras G. G. The Rise of Organic Bioelectronics. Chem. Mater. 2014, 26, 679–685. 10.1021/CM4022003/ASSET/IMAGES/LARGE/CM-2013-022003_0003.JPEG. DOI
Liao C.; Mak C.; Zhang M.; Chan H. L. W.; Yan F. Flexible Organic Electrochemical Transistors for Highly Selective Enzyme Biosensors and Used for Saliva Testing. Adv. Mater. 2015, 27, 676–681. 10.1002/ADMA.201404378. PubMed DOI
Rivnay J.; Inal S.; Collins B. A.; Sessolo M.; Stavrinidou E.; Strakosas X.; Tassone C.; Delongchamp D. M.; Malliaras G. G. Structural Control of Mixed Ionic and Electronic Transport in Conducting Polymers. Nat. Commun. 2016, 7, 1–9. 10.1038/ncomms11287. PubMed DOI PMC
Zeglio E.; Inganäs O. Active Materials for Organic Electrochemical Transistors. Adv. Mater. 2018, 30, 180094110.1002/ADMA.201800941. PubMed DOI
Proctor C. M.; Rivnay J.; Malliaras G. G. Understanding Volumetric Capacitance in Conducting Polymers. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1433–1436. 10.1002/POLB.24038. DOI
Paulsen B. D.; Tybrandt K.; Stavrinidou E.; Rivnay J. Organic Mixed Ionic–Electronic Conductors. Nat. Mater. 2020, 19, 13–26. 10.1038/s41563-019-0435-z. PubMed DOI
Khodagholy D.; Rivnay J.; Sessolo M.; Gurfinkel M.; Leleux P.; Jimison L. H.; Stavrinidou E.; Herve T.; Sanaur S.; Owens R. M.; Malliaras G. G. High Transconductance Organic Electrochemical Transistors. Nat. Commun. 2013, 4, 2133.10.1038/ncomms3133. PubMed DOI PMC
Rivnay J.; Leleux P.; Ferro M.; Sessolo M.; Williamson A.; Koutsouras D. A.; Khodagholy D.; Ramuz M.; Strakosas X.; Owens R. M.; Benar C.; Badier J. M.; Bernard C.; Malliaras G. G. High-Performance Transistors for Bioelectronics through Tuning of Channel Thickness. Sci. Adv. 2015, 1, e140025110.1126/SCIADV.1400251/SUPPL_FILE/1400251_SM.PDF. PubMed DOI PMC
Marks A.; Griggs S.; Gasparini N.; Moser M. Organic Electrochemical Transistors: An Emerging Technology for Biosensing. Adv. Mater. Interfaces 2022, 9, 210203910.1002/ADMI.202102039. DOI
Sun H.; Vagin M.; Wang S.; Crispin X.; Forchheimer R.; Berggren M.; Fabiano S. Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors. Adv. Mater. 2018, 30, 170491610.1002/ADMA.201704916. PubMed DOI
Huang W.; Chen J.; Yao Y.; Zheng D.; Ji X.; Feng L. W.; Moore D.; Glavin N. R.; Xie M.; Chen Y.; Pankow R. M.; Surendran A.; Wang Z.; Xia Y.; Bai L.; Rivnay J.; Ping J.; Guo X.; Cheng Y.; Marks T. J.; Facchetti A. Vertical Organic Electrochemical Transistors for Complementary Circuits. Nature 2023, 613, 496–502. 10.1038/s41586-022-05592-2. PubMed DOI PMC
Cea C.; Spyropoulos G. D.; Jastrzebska-Perfect P.; Ferrero J. J.; Gelinas J. N.; Khodagholy D. Enhancement-Mode Ion-Based Transistor as a Comprehensive Interface and Real-Time Processing Unit for in Vivo Electrophysiology. Nat. Mater. 2020, 19, 679–686. 10.1038/s41563-020-0638-3. PubMed DOI
Ohayon D.; Druet V.; Inal S. A Guide for the Characterization of Organic Electrochemical Transistors and Channel Materials. Chem. Soc. Rev. 2023, 1001.10.1039/D2CS00920J. PubMed DOI
Yu S.; Kousseff C. J.; Nielsen C. B. N-Type Semiconductors for Organic Electrochemical Transistor Applications. Synth. Met. 2023, 293, 11729510.1016/J.SYNTHMET.2023.117295. DOI
Friedlein J. T.; McLeod R. R.; Rivnay J. Device Physics of Organic Electrochemical Transistors. Org. Electron. 2018, 63, 398–414. 10.1016/J.ORGEL.2018.09.010. DOI
Donahue M. J.; Williamson A.; Strakosas X.; Friedlein J. T.; McLeod R. R.; Gleskova H.; Malliaras G. G. High-Performance Vertical Organic Electrochemical Transistors. Adv. Mater. 2018, 30, 170503110.1002/ADMA.201705031. PubMed DOI
Rashid R. B.; Du W.; Griggs S.; Maria I. P.; McCulloch I.; Rivnay J. Ambipolar Inverters Based on Cofacial Vertical Organic Electrochemical Transistor Pairs for Biosignal Amplification. Sci. Adv. 2021, 7, eabh1055.10.1126/SCIADV.ABH1055/SUPPL_FILE/SCIADV.ABH1055_SM.PDF. PubMed DOI PMC
Jastrzebska-Perfect P.; Chowdhury S.; Spyropoulos G. D.; Zhao Z.; Cea C.; Gelinas J. N.; Khodagholy D. Translational Neuroelectronics. Adv. Funct. Mater. 2020, 30, 190916510.1002/ADFM.201909165. DOI
Rybakiewicz-Sekita R.; Gryszel M.; Pathak G.; Gańczarczyk R.; Gańczarczyk G.; Donahue M. J.; Głowacki E. D. Well-Defined Electrochemical Switching of Amphiphilic Glycolated Poly(3,4-Ethylenedioxythiophene). J. Mater. Chem. 2022, 10, 17208–17215. 10.1039/D2TC01448C. DOI
Lee J.; Chhatre S.; Sitarik P.; Wu Y.; Baugh Q.; Martin D. C. Electrochemical Fabrication and Characterization of Organic Electrochemical Transistors Using Poly(3,4-Ethylenedioxythiophene) with Various Counterions. ACS Appl. Mater. Interfaces 2022, 14, 42289–42297. 10.1021/ACSAMI.2C10149/ASSET/IMAGES/LARGE/AM2C10149_0009.JPEG. PubMed DOI
Wustoni S.; Hidalgo T. C.; Hama A.; Ohayon D.; Savva A.; Wei N.; Wehbe N.; Inal S. In Situ Electrochemical Synthesis of a Conducting Polymer Composite for Multimetabolite Sensing. Adv. Mater. Technol. 2020, 5, 190094310.1002/ADMT.201900943. DOI
Harper J. M. E.; Cuomo J. J.; Kaufman H. R. Technology and Applications of Broad-beam Ion Sources Used in Sputtering. Part II. Applications. J. Vac. Sci. Technol. 1982, 21, 737.10.1116/1.571820. DOI
Paudel P. R.; Skowrons M.; Dahal D.; Radha Krishnan R. K.; Lüssem B. The Transient Response of Organic Electrochemical Transistors. Adv. Theory Simul. 2022, 5, 210056310.1002/ADTS.202100563. DOI
Ko J.; Wu X.; Surendran A.; Muhammad B. T.; Leong W. L. Self-Healable Organic Electrochemical Transistor with High Transconductance, Fast Response, and Long-Term Stability. ACS Appl. Mater. Interfaces 2020, 12, 33979–33988. 10.1021/ACSAMI.0C07913/ASSET/IMAGES/LARGE/AM0C07913_0005.JPEG. PubMed DOI
Hütter P. C.; Rothländer T.; Haase A.; Trimmel G.; Stadlober B. Influence of Geometry Variations on the Response of Organic Electrochemical Transistors. Appl. Phys. Lett. 2013, 103, 04330810.1063/1.4816781. DOI
Rothlander T.; Hutter P. C.; Renner E.; Gold H.; Haase A.; Stadlober B. Nanoimprint Lithography-Structured Organic Electrochemical Transistors and Logic Circuits. IEEE Trans. Electron Devices 2014, 61, 1515–1519. 10.1109/TED.2014.2312986. DOI
In Situ Electropolymerized Ambipolar Copolymers for Vertical OECTs