Phenyl-Substituted Cibalackrot Derivatives: Synthesis, Structure, and Solution Photophysics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37219972
PubMed Central
PMC10242757
DOI
10.1021/acs.joc.2c02706
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Three symmetrically and three unsymmetrically substituted cibalackrot (7,14-diphenyldiindolo[3,2,1-de:3',2',1'-ij][1,5]naphthyridine-6,13-dione, 1) dyes carrying two derivatized phenyl rings have been synthesized as candidates for molecular electronics and especially for singlet fission, a process of interest for solar energy conversion. Solution measurements provided singlet and triplet excitation energies and fluorescence yields and lifetimes; conformational properties were analyzed computationally. The molecular properties are close to ideal for singlet fission. However, crystal structures, obtained by single-crystal X-ray diffraction (XRD), are rather similar to those of the polymorphs of solid 1, in which the formation of a charge-separated state followed by intersystem crossing, complemented with excimer formation, outcompetes singlet fission. Results of calculations by the approximate SIMPLE method suggest which ones among the solid derivatives are the best candidates for singlet fission, but it appears difficult to change the crystal packing in a desirable direction. We also describe the preparation of three specifically deuteriated versions of 1, expected to help sort out the mechanism of fast intersystem crossing in its charge-separated state.
Department of Chemistry University of Colorado Boulder Colorado 80309 0215 United States
University of Chemistry and Technology Technicka 5 16000 Prague 6 Czech Republic
Zobrazit více v PubMed
Engi G. Über neue Derivate des Indigos und anderer indigoider Farbstoffe. Z. Angew. Chem. 1914, 27, 144–148. 10.1002/ange.19140272003. DOI
Posner T.; Kempel W. Beiträge zur Kenntnis der Indigo-gruppe, IV.: Über einen neuen aus Indigo und Phenylessigester entstehenden Küpenfarbstoff. Ber. Dtsch. Chem. Ges. 1924, 57, 1311–1315. 10.1002/cber.19240570815. DOI
Fallon K. J.; Budden P.; Salvadori E.; Ganose A. M.; Savory C. N.; Eyre L.; Dowland S.; Ai Q.; Goodlett S.; Risko C.; Scanlon D. O.; Kay C. W. M.; Rao A.; Friend R. H.; Musser A. J.; Bronstein H. Exploiting Excited-State Aromaticity To Design Highly Stable Singlet Fission Materials. J. Am. Chem. Soc. 2019, 141, 13867–13876. 10.1021/jacs.9b06346. PubMed DOI
Fallon K. J.; Wijeyasinghe N.; Manley E. F.; Dimitrov S. D.; Yousaf S. A.; Ashraf R. S.; Duffy W.; Guilbert A. A. Y.; Freeman D. M. E.; Al-Hashimi M.; Nelson J.; Durrant J. R.; Chen L. X.; McCulloch I.; Marks T. J.; Clarke T. M.; Anthopoulos T. D.; Bronstein H. Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. Chem. Mater. 2016, 28, 8366–8378. 10.1021/acs.chemmater.6b03671. DOI
Glowacki E. D.; Leonat L.; Voss G.; Bodea M.; Bozkurt Z.; Irimia-Vladu M.; Bauer S.; Sariciftci N. S.. Natural and Nature-inspired Semiconductors for Organic Electronics, SPIE Proceedings; SPIE, 2011.
Głowacki E. D.; Voss G.; Sariciftci N. S. 25th Anniversary Article: Progress in Chemistry and Applications of Functional Indigos for Organic Electronics. Adv. Mater. 2013, 25, 6783–6800. 10.1002/adma.201302652. PubMed DOI
Shukla A.; Wallwork N. R.; Li X.; Sobus J.; Mai V. T. N.; McGregor S. K. M.; Chen K.; Lepage R. J.; Krenske E. H.; Moore E. G.; Namdas E. B.; Lo S.-C. Deep-Red Lasing and Amplified Spontaneous Emission from Nature Inspired Bay-Annulated Indigo Derivatives. Adv. Opt. Mater. 2020, 8, 190135010.1002/adom.201901350. DOI
Ryerson J. L.; Zaykov A.; Suarez L. E. A.; Havenith R. W. A.; Stepp B. R.; Dron P. I.; Kaleta J.; Akdag A.; Teat S. J.; Magnera T. F.; Miller J. R.; Havlas Z.; Broer R.; Faraji S.; Michl J.; Johnson J. C. Structure and Photophysics of Indigoids for Singlet Fission: Cibalackrot. J. Chem. Phys. 2019, 151, 18490310.1063/1.5121863. PubMed DOI
Zeng W.; El Bakouri O.; Szczepanik D. W.; Bronstein H.; Ottosson H. Excited State Character of Cibalackrot-type Compounds Interpreted in Terms of Hückel-aromaticity: A Rationale for Singlet Fission Chromophore Design. Chem. Sci. 2021, 12, 6159–6171. 10.1039/D1SC00382H. PubMed DOI PMC
Weber F.; Mori H. Machine-learning Assisted Design Principle Search for Singlet Fission: An Example Study of Cibalackrot. npj Comput. Mater. 2022, 8, 17610.1038/s41524-022-00860-1. DOI
Zeng W.; Szczepanik D. W.; Bronstein H. Cibalackrot-type compounds: Stable singlet fission materials with aromatic ground state and excited state. J. Phys. Org. Chem. 2023, 36, e444110.1002/poc.4441. DOI
Stanger A. Singlet Fission and Aromaticity. J. Phys. Chem. A 2022, 126, 8049–8057. 10.1021/acs.jpca.2c04146. PubMed DOI
Smith M. B.; Michl J. Singlet Fission. Chem. Rev. 2010, 110, 6891–6936. 10.1021/cr1002613. PubMed DOI
Shockley W.; Queisser H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. 10.1063/1.1736034. DOI
Hanna M. C.; Nozik A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 07451010.1063/1.2356795. DOI
Lee J.; Jadhav P.; Baldo M. A. High Efficiency Organic Multilayer Photodetectors Based on Singlet Exciton Fission. Appl. Phys. Lett. 2009, 95, 03330110.1063/1.3182787. DOI
Thompson N. J.; Congreve D. N.; Goldberg D.; Menon V. M.; Baldo M. A. Slow Light Enhanced Singlet Exciton Fission Solar Cells with a 126% Yield of Electrons Per Photon. Appl. Phys. Lett. 2013, 103, 26330210.1063/1.4858176. DOI
Tabachnyk M.; Ehrler B.; Bayliss S.; Friend R. H.; Greenham N. C. Triplet Diffusion in Singlet Exciton Fission Sensitized Pentacene Solar Cells. Appl. Phys. Lett. 2013, 103, 15330210.1063/1.4824420. DOI
Congreve D. N.; Lee J.; Thompson N. J.; Hontz E.; Yost S. R.; Reusswig P. D.; Bahlke M. E.; Reineke S.; Van Voorhis T.; Baldo M. A. External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission-Based Organic Photovoltaic Cell. Science 2013, 340, 334–337. 10.1126/science.1232994. PubMed DOI
Thompson N. J.; Hontz E.; Congreve D. N.; Bahlke M. E.; Reineke S.; Van Voorhis T.; Baldo M. A. Nanostructured Singlet Fission Photovoltaics Subject to Triplet-Charge Annihilation. Adv. Mater. 2014, 26, 1366–1371. 10.1002/adma.201304588. PubMed DOI
Wu T. C.; Thompson N. J.; Congreve D. N.; Hontz E.; Yost S. R.; Van Voorhis T.; Baldo M. A. Singlet Fission Efficiency in Tetracene-Based Organic Solar Cells. Appl. Phys. Lett. 2014, 104, 19390110.1063/1.4876600. DOI
Yang L.; Tabachnyk M.; Bayliss S. L.; Böhm M. L.; Broch K.; Greenham N. C.; Friend R. H.; Ehrler B. Solution-Processable Singlet Fission Photovoltaic Devices. Nano Lett. 2015, 15, 354–358. 10.1021/nl503650a. PubMed DOI
Li J.; Chen Z.; Lei Y.; Xiong Z.; Zhang Y. Competition Between Singlet Exciton Fission, Radiation, and Dissociation Measured in Rubrene-Doped Amorphous Films. Synth. Met. 2015, 207, 13–17. 10.1016/j.synthmet.2015.05.026. DOI
de Melo J. S.; Rondão R.; Burrows H. D.; Melo M. J.; Navaratnam S.; Edge R.; Voss G. Photophysics of an Indigo Derivative (Keto and Leuco Structures) With Singular Properties. J. Phys. Chem. A 2006, 110, 13653–13661. 10.1021/jp057451w. PubMed DOI
Dinçalp H.; Saltan G. M.; Zafer C.; Kıymaz D. A. Bromo-substituted Cibalackrot Backbone, a Versatile Donor or Acceptor Main Core for Organic Optoelectronic Devices. J. Mol. Struct. 2018, 1173, 512–520. 10.1016/j.molstruc.2018.07.009. DOI
Turro N. J.; Lei X.-G.; Jockusch S.; Li W.; Liu Z.; Abrams L.; Ottaviani M. F. EPR Investigation of Persistent Radicals Produced from the Photolysis of Dibenzyl Ketones Adsorbed on ZSM-5 Zeolites. J. Org. Chem. 2002, 67, 2606–2618. 10.1021/jo011047l. PubMed DOI
Fountain K. R.; Heinze P.; Sherwood M.; Maddex D.; Gerhardt G. Acylation of Aromatic Substrates With Ketenes. An Example of Vinyl Oxocation Reactivity. Can. J. Chem. 1980, 58, 1198–1205. 10.1139/v80-187. DOI
Olah G. A.; Olah J. A.; Ohyama T. Friedel-Crafts Alkylation of Anisole and its Comparison with Toluene. Predominant Ortho-para Substitution Under Kinetic Conditions and the Effect of Thermodynamic Isomerizations. J. Am. Chem. Soc. 1984, 106, 5284–5290. 10.1021/ja00330a042. DOI
Wierlacher S.; Sander W.; Liu M. T. H. Photolysis of Alkylhalodiazirines and Direct Observation of Benzylchlorocarbene in Cryogenic Matrixes. J. Am. Chem. Soc. 1993, 115, 8943–8953. 10.1021/ja00073a008. DOI
Chao H. S. I.; Berchtold G. A. Aromatization of Arene 1,2-oxides. 1,2-Oxides of methyl Phenylacetate and Methyl trans-cinnamate. J. Org. Chem. 1981, 46, 1191–1194. 10.1021/jo00319a029. DOI
Zaykov A.; Felkel P.; Buchanan E. A.; Jovanovic M.; Havenith R. W. A.; Kathir R. K.; Broer R.; Havlas Z.; Michl J. Singlet Fission Rate: Optimized Packing of a Molecular Pair. Ethylene as a Model. J. Am. Chem. Soc. 2019, 141, 17729–17743. 10.1021/jacs.9b08173. PubMed DOI
SAINT Software for CCD Diffractometers; Bruker AXS Inc.: Madison, WI, 2014.
Sheldrick G. M.TWINABS; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2000.
Sheldrick G. M.SADABS; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2000.
Sheldrick G. M. SHELXT - Integrated Space-group and Crystal-structure Determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8. 10.1107/s2053273314026370. PubMed DOI PMC
Sheldrick G. M. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122. 10.1107/S0108767307043930. PubMed DOI
Zhang X.-F.; Zhang Y.; Liu L. Fluorescence Lifetimes and Quantum Yields of Ten Rhodamine Derivatives: Structural Effect on Emission Mechanism in Different Solvents. J. Lumin. 2014, 145, 448–453. 10.1016/j.jlumin.2013.07.066. DOI
Lakowicz J. R.Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Boston, MA, 2006.
Hermans J. J.; Levinson S. Some Geometrical Factors in Light-Scattering Apparatus. J. Opt. Soc. Am. 1951, 41, 460–465. 10.1364/JOSA.41.000460. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery Jr J. A.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, revision B.01; Gaussian, Inc.: Wallingford CT, 2016.
Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI
Kendall R. A.; Dunning T. H. Jr.; Harrison R. J. Electron Affinities of the First Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI
Glendening E. D.; Badenhoop J. K.; Reed A. E.; Carpenter J. E.; Bohmann J. A.; Morales C. M.; Karafiloglou P.; Landis C. R.; Weinhold F.. NBO 7.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, 2018.
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, revision C.01;Gaussian, Inc.: Wallingford CT, 2016.
Rais D.; Toman P.; Pfleger J.; Acharya U.; Panthi Y. R.; Menšík M.; Zhigunov A.; Thottappali M. A.; Vala M.; Marková A.; Stříteský S.; Weiter M.; Cigánek M.; Krajčovič J.; Pauk K.; Imramovský A.; Zaykov A.; Michl J. Singlet Fission in Thin Solid Films of Bis(thienyl)diketopyrrolopyrroles. ChemPlusChem 2020, 85, 2689–2703. 10.1002/cplu.202000623. PubMed DOI
Nelsen S. F.; Blackstock S. C.; Kim Y. Estimation of Inner Shell Marcus Terms for Amino Nitrogen Compounds by Molecular Orbital Calculations. J. Am. Chem. Soc. 1987, 109, 677–682. 10.1021/ja00237a007. DOI
Freudenreich C.; Samama J. P.; Biellmann J. F. Design of inhibitors from the three-dimensional structure of alcohol dehydrogenase. Chemical synthesis and enzymic properties. J. Am. Chem. Soc. 1984, 106, 3344–3353. 10.1021/ja00323a048. DOI
Hahn B.; Köpke B.; Voß J. Darstellung von Diaryl- und Aryl-tert-butyl-α-thioxoketonen. Liebigs Ann. Chem. 1981, 1981, 10–19. 10.1002/jlac.198119810104. DOI
Okamoto I.; Takahashi Y.; Sawamura M.; Matsumura M.; Masu H.; Katagiri K.; Azumaya I.; Nishino M.; Kohama Y.; Morita N.; Tamura O.; Kagechika H.; Tanatani A. Redox-responsive conformational alteration of aromatic amides bearing N-quinonyl system. Tetrahedron 2012, 68, 5346–5355. 10.1016/j.tet.2012.04.114. DOI
Kaleta J.; Dudič M.; Ludvíková L.; Liška A.; Zaykov A.; Rončevič I.; Mašát M.; Bednárová L.; Dron P. I.; Teat S. J.; Michl J.. Phenyl-Substituted Cibalackrot Derivatives: Synthesis, Structure, and Solution Photophysics ChemRxiv 2023. PubMed PMC
Phenyl-Substituted Cibalackrot Derivatives: Synthesis, Structure, and Solution Photophysics