Uncovering intramolecular singlet fission at the root of the dual fluorescence of 1,4-bis(p-nitro-β-styryl)benzene in solution
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40704330
PubMed Central
PMC12282604
DOI
10.1039/d5sc03612g
PII: d5sc03612g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The exploration of singlet fission (SF) promises a pathway to many leaps forward including more efficient solar energy extraction and, more recently, organic-based quantum computing. Our study, through a joint experimental and computational approach, revolves around 1,4-bis(p-nitro-β-styryl)benzene (1) as the smallest molecule where the intramolecular transformation of the initially allowed 11Bu singlet state to the 21Ag excited state stops being ordinary internal conversion and becomes the first half of the SF process. Herein, we experimentally observe explicit breaking of the Kasha rule. Using femtosecond broadband fluorescence upconversion, we measure a dual fluorescence of 1 in solution from its two lowest singlet excited states of different symmetry. Femtosecond transient absorption (TA) and fluorescence upconversion spectroscopy of 1 in toluene reveal ultrafast (17 ± 5 ps), almost quantitative interconversion between 11B and 21A states. A sensitization bracketing experiment with ns-TA is used to analyze the T1 state of 1. Employing high-level ab initio extended multi-configuration quasi-degenerate 2nd-order perturbation theory (XMCQDPT2) calculations, we accurately model ground- and excited-state potential energy surfaces. 11B states are predominantly described by ordinary HOMO-LUMO excitation. 21A states can be projected in localized frontier molecular orbitals as an intramolecular strongly coupled triplet biexciton [1(T1T1)] with the inclusion of intramolecular charge-transfer states. Moreover, the experimental resemblance of 21A and T1 absorption is elucidated. The fluorescence temperature-dependence experiment further corroborates the XMCQDPT2 model accurate prediction of the 11B and 21A low barrier of crossing (ca. 600 cm-1). The concentration-dependent experiment shows a dramatic increase in triplet yield: up to 200% yield is obtained by ns-TA quantitative measurements. All the obtained results suggest the occurrence of an SF mechanism for the triplet production: intramolecular 1(T1T1) formation followed by intermolecular triplet separation aided by entropy and spatial separation.
Zobrazit více v PubMed
Smith M. B. Michl J. Chem. Rev. 2010;110:6891–6936. doi: 10.1021/cr1002613. PubMed DOI
Smith M. B. Michl J. Annu. Rev. Phys. Chem. 2013;64:361–386. doi: 10.1146/annurev-physchem-040412-110130. PubMed DOI
Miyata K. Conrad-Burton F. S. Geyer F. L. Zhu X. Y. Chem. Rev. 2019;119:4261–4292. doi: 10.1021/acs.chemrev.8b00572. PubMed DOI
Shockley W. Queisser H. J. J. Appl. Phys. 1961;32:510–519. doi: 10.1063/1.1736034. DOI
Hanna M. C. Nozik A. J. J. Appl. Phys. 2006;100:074510. doi: 10.1063/1.2356795. DOI
Daiber B. van den Hoven K. Futscher M. H. Ehrler B. ACS Energy Lett. 2021;6:2800–2808. doi: 10.1021/acsenergylett.1c00972. PubMed DOI PMC
Baldacchino A. J. Collins M. I. Nielsen M. P. Schmidt T. W. McCamey D. R. Tayebjee M. J. Y. Chem. Phys. Rev. 2022;3:021304. doi: 10.1063/5.0080250. DOI
Sharma T. Afroz M. A. Satapathi S. ACS Photonics. 2024;11:3922–3932. doi: 10.1021/acsphotonics.4c00087. DOI
Smyser K. E. Eaves J. D. Sci. Rep. 2020;10:18480. doi: 10.1038/s41598-020-75459-x. PubMed DOI PMC
Yamauchi A. Tanaka K. Fuki M. Fujiwara S. Kimizuka N. Ryu T. Saigo M. Onda K. Kusumoto R. Ueno N. Sato H. Kobori Y. Miyata K. Yanai N. Sci. Adv. 2024;10:eadi3147. doi: 10.1126/sciadv.adi3147. PubMed DOI PMC
Hosteny Jr R. P. Dunning T. H. Gilman R. R. Pipano A. Shavitt I. J. Chem. Phys. 1975;62:4764–4779. doi: 10.1063/1.430426. DOI
Levine B. G. Ko C. Quenneville J. MartÍnez T. J. Mol. Phys. 2006;104:1039–1051. doi: 10.1080/00268970500417762. DOI
Leng J. M. Jeglinski S. Wei X. Benner R. E. Vardeny Z. V. Guo F. Mazumdar S. Phys. Rev. Lett. 1994;72:156–159. doi: 10.1103/PhysRevLett.72.156. PubMed DOI
Österbacka R. Wohlgenannt M. Chinn D. Vardeny Z. V. Phys. Rev. B:Condens. Matter Mater. Phys. 1999;60:R11253–R11256. doi: 10.1103/PhysRevB.60.R11253. DOI
Österbacka R. Wohlgenannt M. Shkunov M. Chinn D. Vardeny Z. V. J. Chem. Phys. 2003;118:8905–8916. doi: 10.1063/1.1566937. DOI
Luo F.-T. Tao Y.-T. Ko S.-L. Chuen C.-H. Chen H. J. Mater. Chem. 2002;12:47–52. doi: 10.1039/B109392D. DOI
Baatout K. Mahmoudi C. Laajimi M. Ibn EL Hadj Rhouma F. Smida N. Majdoub M. Opt. Mater. 2023;146:114588. doi: 10.1016/j.optmat.2023.114588. DOI
Shimomura Y. Igawa K. Sasaki S. Sakakibara N. Goseki R. Konishi G. Chem.–Eur. J. 2022;28:e202201884. doi: 10.1002/chem.202201884. PubMed DOI PMC
Marri E. Pannacci D. Galiazzo G. Mazzucato U. Spalletti A. J. Phys. Chem. A. 2003;107:11231–11238. doi: 10.1021/jp035401q. DOI
Marri E. Elisei F. Mazzucato U. Pannacci D. Spalletti A. J. Photochem. Photobiol., A. 2006;177:307–313. doi: 10.1016/j.jphotochem.2005.06.010. DOI
Carlotti B. Elisei F. Mazzucato U. Spalletti A. Phys. Chem. Chem. Phys. 2015;17:14740–14749. doi: 10.1039/C5CP00291E. PubMed DOI
Busby E. Xia J. Wu Q. Low J. Z. Song R. Miller J. R. Zhu X.-Y. Campos L. M. Sfeir M. Y. Nat. Mater. 2015;14:426–433. doi: 10.1038/nmat4175. PubMed DOI
Basel B. S. Zirzlmeier J. Hetzer C. Reddy S. R. Phelan B. T. Krzyaniak M. D. Volland M. K. Coto P. B. Young R. M. Clark T. Thoss M. Tykwinski R. R. Wasielewski M. R. Guldi D. M. Chem. 2018;4:1092–1111.
Mencaroni L. Carlotti B. Elisei F. Marrocchi A. Spalletti A. Chem. Sci. 2022;13:2071–2078. doi: 10.1039/D1SC07175K. PubMed DOI PMC
Granovsky A. A. J. Chem. Phys. 2011;134:214113. doi: 10.1063/1.3596699. PubMed DOI
Ioffe I. N. Granovsky A. A. J. Chem. Theory Comput. 2013;9:4973–4990. doi: 10.1021/ct400647w. PubMed DOI
Ioffe I. N. Quick M. Quick M. T. Dobryakov A. L. Richter C. Granovsky A. A. Berndt F. Mahrwald R. Ernsting N. P. Kovalenko S. A. J. Am. Chem. Soc. 2017;139:15265–15274. doi: 10.1021/jacs.7b09611. PubMed DOI
Park J. W. J. Chem. Theory Comput. 2021;17:6122–6133. doi: 10.1021/acs.jctc.1c00613. PubMed DOI
Park W. Shen J. Lee S. Piecuch P. Filatov M. Choi C. H. J. Phys. Chem. Lett. 2021;12:9720–9729. doi: 10.1021/acs.jpclett.1c02707. PubMed DOI
Park J. W. Al-Saadon R. MacLeod M. K. Shiozaki T. Vlaisavljevich B. Chem. Rev. 2020;120:5878–5909. doi: 10.1021/acs.chemrev.9b00496. PubMed DOI
Montalti M., Credi A., Prodi L. and Gandolfi M. T., Handbook of Photochemistry, CRC Press, Boca Raton, 3rd edn, 2006
Edhborg F. Olesund A. Albinsson B. Photochem. Photobiol. Sci. 2022;21:1143–1158. doi: 10.1007/s43630-022-00219-x. PubMed DOI
Snellenburg J. J. Laptenok S. Seger R. Mullen K. M. van Stokkum I. H. M. J. Stat. Softw. 2012;49:1–22.
Reynolds L. Gardecki J. A. Frankland S. J. V. Horng M. L. Maroncelli M. J. Phys. Chem. 1996;100:10337–10354. doi: 10.1021/jp953110e. DOI
Carmichael I. Hug G. L. J. Phys. Chem. Ref. Data. 1986;15:1–250. doi: 10.1063/1.555770. DOI
Margulies E. A. Miller C. E. Wu Y. Ma L. Schatz G. C. Young R. M. Wasielewski M. R. Nat. Chem. 2016;8:1120–1125. doi: 10.1038/nchem.2589. PubMed DOI
Almlöf J. and Taylor P. R., in Advances in Quantum Chemistry, ed. P.-O. Löwdin, J. R. Sabin and M. C. Zerner, Academic Press, 1991, vol. 22, pp. 301–373
Plasser F. Mewes S. A. Dreuw A. González L. J. Chem. Theory Comput. 2017;13:5343–5353. doi: 10.1021/acs.jctc.7b00718. PubMed DOI
Schulten K. Karplus M. Chem. Phys. Lett. 1972;14:305–309. doi: 10.1016/0009-2614(72)80120-9. DOI
Antognazza M. R. Lüer L. Polli D. Christensen R. L. Schrock R. R. Lanzani G. Cerullo G. Chem. Phys. 2010;373:115–121. doi: 10.1016/j.chemphys.2010.03.002. DOI
Papagiannakis E. Kennis J. T. M. van Stokkum I. H. M. Cogdell R. J. van Grondelle R. Proc. Natl. Acad. Sci. U. S. A. 2002;99:6017–6022. doi: 10.1073/pnas.092626599. PubMed DOI PMC
Gradinaru C. C. Kennis J. T. M. Papagiannakis E. van Stokkum I. H. M. Cogdell R. J. Fleming G. R. Niederman R. A. van Grondelle R. Proc. Natl. Acad. Sci. U. S. A. 2001;98:2364–2369. doi: 10.1073/pnas.051501298. PubMed DOI PMC
Tavan P. Schulten K. Phys. Rev. B:Condens. Matter Mater. Phys. 1987;36:4337–4358. doi: 10.1103/PhysRevB.36.4337. PubMed DOI
Wang L. Zhang T.-S. Fu L. Xie S. Wu Y. Cui G. Fang W.-H. Yao J. Fu H. J. Am. Chem. Soc. 2021;143:5691–5697. doi: 10.1021/jacs.0c11681. PubMed DOI
Chandross M. Shimoi Y. Mazumdar S. Synth. Met. 1997;85:1001–1006. doi: 10.1016/S0379-6779(97)80132-4. DOI
Gelessus A. Thiel W. Weber W. J. Chem. Educ. 1995;72:505. doi: 10.1021/ed072p505. DOI
Nesbet R. K. Proc. R. Soc. London, Ser. A. 1955;230:322–330.
Orlandi G. Siebrand W. J. Chem. Phys. 1973;58:4513–4523. doi: 10.1063/1.1679014. DOI
Yong C. K. Musser A. J. Bayliss S. L. Lukman S. Tamura H. Bubnova O. Hallani R. K. Meneau A. Resel R. Maruyama M. Hotta S. Herz L. M. Beljonne D. Anthony J. E. Clark J. Sirringhaus H. Nat. Commun. 2017;8:15953. doi: 10.1038/ncomms15953. PubMed DOI PMC
Stern H. L. Cheminal A. Yost S. R. Broch K. Bayliss S. L. Chen K. Tabachnyk M. Thorley K. Greenham N. Hodgkiss J. M. Anthony J. Head-Gordon M. Musser A. J. Rao A. Friend R. H. Nat. Chem. 2017;9:1205–1212. doi: 10.1038/nchem.2856. PubMed DOI
Musser A. J. Clark J. Annu. Rev. Phys. Chem. 2019;70:323–351. doi: 10.1146/annurev-physchem-042018-052435. PubMed DOI
Lukman S. Richter J. M. Yang L. Hu P. Wu J. Greenham N. C. Musser A. J. J. Am. Chem. Soc. 2017;139:18376–18385. doi: 10.1021/jacs.7b10762. PubMed DOI
Polak D. W. Andrews I. Salvadori E. Musser A. J. Auty A. Chekulaev D. Weinstein J. A. Heeney M. Clark J. J. Am. Chem. Soc. 2025;147:662–668. doi: 10.1021/jacs.4c12877. PubMed DOI PMC
Bartocci G. Mazzucato U. Chem. Phys. Lett. 1977;47:541–544. doi: 10.1016/0009-2614(77)85036-7. DOI
Mazzucato U. Momicchioli F. Chem. Rev. 1991;91:1679–1719. doi: 10.1021/cr00008a002. DOI
Marconi G. Bartocci G. Mazzucato U. Spalletti A. Abbate F. Angeloni L. Castellucci E. Chem. Phys. 1995;196:383–393. doi: 10.1016/0301-0104(95)00075-Y. DOI
Ogawa K. Suzuki H. Futakami M. J. Chem. Soc., Perkin Trans. 2. 1988:39–43. doi: 10.1039/P29880000039. DOI
Ciorba S. Galiazzo G. Mazzucato U. Spalletti A. J. Phys. Chem. A. 2010;114:10761–10768. doi: 10.1021/jp105383e. PubMed DOI
Havlas Z. Michl J. Isr. J. Chem. 2016;56:96–106. doi: 10.1002/ijch.201500054. DOI
Miller C. E. Wasielewski M. R. Schatz G. C. J. Phys. Chem. C. 2017;121:10345–10350. doi: 10.1021/acs.jpcc.7b02697. DOI
Johnson J. C. Commun. Chem. 2021;4:1–3. doi: 10.1038/s42004-020-00440-8. PubMed DOI PMC
Mencaroni L. Elisei F. Marrocchi A. Spalletti A. Carlotti B. J. Phys. Chem. B. 2024;128:3442–3453. doi: 10.1021/acs.jpcb.4c00194. PubMed DOI
Mauck C. M. Hartnett P. E. Margulies E. A. Ma L. Miller C. E. Schatz G. C. Marks T. J. Wasielewski M. R. J. Am. Chem. Soc. 2016;138:11749–11761. doi: 10.1021/jacs.6b05627. PubMed DOI
Rais D. Toman P. Pfleger J. Acharya U. Panthi Y. R. Menšík M. Zhigunov A. Thottappali M. A. Vala M. Marková A. Stříteský S. Weiter M. Cigánek M. Krajčovič J. Pauk K. Imramovský A. Zaykov A. Michl J. ChemPlusChem. 2020;85:2689–2703. doi: 10.1002/cplu.202000623. PubMed DOI
Alebardi M. Munzone C. Sorbelli E. Grasso A. Mencaroni L. Elisei F. Fortuna C. G. Spalletti A. Bonaccorso C. Carlotti B. Adv. Funct. Mater. 2024;34:2403706. doi: 10.1002/adfm.202403706. DOI
Ryerson J. L. Zaykov A. Suarez L. E. A. Havenith R. W. A. Stepp B. R. Dron P. I. Kaleta J. Akdag A. Teat S. J. Magnera T. F. Miller J. R. Havlas Z. Broer R. Faraji S. Michl J. Johnson J. C. J. Chem. Phys. 2019;151:184903. doi: 10.1063/1.5121863. PubMed DOI
Kaleta J. Dudič M. Ludvíková L. Liška A. Zaykov A. Rončević I. Mašát M. Bednárová L. Dron P. I. Teat S. J. Michl J. J. Org. Chem. 2023;88:6573–6587. doi: 10.1021/acs.joc.2c02706. PubMed DOI PMC
Sanders S. N. Pun A. B. Parenti K. R. Kumarasamy E. Yablon L. M. Sfeir M. Y. Campos L. M. Chem. 2019;5:1988–2005.
Marcus M. Barford W. Phys. Rev. B:Condens. Matter Mater. Phys. 2020;102:035134. doi: 10.1103/PhysRevB.102.035134. DOI
Millington O. Montanaro S. Sharma A. Dowland S. A. Winkel J. Grüne J. Leventis A. Bennett T. Shaikh J. Greenham N. Rao A. Bronstein H. J. Am. Chem. Soc. 2024;146:29664–29674. doi: 10.1021/jacs.4c10483. PubMed DOI PMC
Mencaroni L. Alebardi M. Elisei F. Škorić I. Spalletti A. Carlotti B. Phys. Chem. Chem. Phys. 2023;25:21089–21099. doi: 10.1039/D3CP02805D. PubMed DOI
Barford W. Phys. Rev. B:Condens. Matter Mater. Phys. 2022;106:035201. doi: 10.1103/PhysRevB.106.035201. DOI
Hartnett P. E. Margulies E. A. Mauck C. M. Miller S. A. Wu Y. Wu Y.-L. Marks T. J. Wasielewski M. R. J. Phys. Chem. B. 2016;120:1357–1366. doi: 10.1021/acs.jpcb.5b10565. PubMed DOI
Korovina N. V. Chang C. H. Johnson J. C. Nat. Chem. 2020;12:391–398. doi: 10.1038/s41557-020-0422-7. PubMed DOI
Pensack R. D. Ostroumov E. E. Tilley A. J. Mazza S. Grieco C. Thorley K. J. Asbury J. B. Seferos D. S. Anthony J. E. Scholes G. D. J. Phys. Chem. Lett. 2016;7:2370–2375. doi: 10.1021/acs.jpclett.6b00947. PubMed DOI
Wang Z. Zhang C. Wang R. Wang G. Wang X. Xiao M. J. Chem. Phys. 2019;151:134309. doi: 10.1063/1.5110188. PubMed DOI
Wang Z. Liu H. Xie X. Zhang C. Wang R. Chen L. Xu Y. Ma H. Fang W. Yao Y. Sang H. Wang X. Li X. Xiao M. Nat. Chem. 2021;13:559–567. doi: 10.1038/s41557-021-00665-7. PubMed DOI
Abraham V. Mayhall N. J. J. Phys. Chem. Lett. 2021;12:10505–10514. doi: 10.1021/acs.jpclett.1c03217. PubMed DOI
Volek T. S. Verkamp M. A. Ruiz G. N. Staat A. J. Li B. C. Rose M. J. Eaves J. D. Roberts S. T. J. Am. Chem. Soc. 2024;146:29575–29587. doi: 10.1021/jacs.4c09923. PubMed DOI
Singh A. Röhr M. I. S. J. Chem. Theory Comput. 2024;20:8624–8633. doi: 10.1021/acs.jctc.4c00473. PubMed DOI
Trinh M. T. Zhong Y. Chen Q. Schiros T. Jockusch S. Sfeir M. Y. Steigerwald M. Nuckolls C. Zhu X. J. Phys. Chem. C. 2015;119:1312–1319. doi: 10.1021/jp512650g. DOI
Chen M. Powers-Riggs N. E. Coleman A. F. Young R. M. Wasielewski M. R. J. Phys. Chem. C. 2020;124:2791–2798. doi: 10.1021/acs.jpcc.9b10397. DOI
Chen M. Coleman A. F. Young R. M. Wasielewski M. R. J. Phys. Chem. C. 2021;125:6999–7009. doi: 10.1021/acs.jpcc.0c10979. DOI
He G. Parenti K. R. Campos L. M. Sfeir M. Y. Adv. Mater. 2022;34:2203974. doi: 10.1002/adma.202203974. PubMed DOI
Nakamura S. Sakai H. Fuki M. Kobori Y. Tkachenko N. V. Hasobe T. J. Phys. Chem. Lett. 2021;12:6457–6463. doi: 10.1021/acs.jpclett.1c01430. PubMed DOI
Nakamura S. Sakai H. Fuki M. Ooie R. Ishiwari F. Saeki A. Tkachenko N. V. Kobori Y. Hasobe T. Angew. Chem., Int. Ed. 2023;62:e202217704. doi: 10.1002/anie.202217704. PubMed DOI
Kolomeisky A. B. Feng X. Krylov A. I. J. Phys. Chem. C. 2014;118:5188–5195. doi: 10.1021/jp4128176. DOI
Kakitani T. Kimura A. Sumi H. J. Phys. Chem. B. 1999;103:3720–3726. doi: 10.1021/jp9832185. DOI
Kimura A. Kakitani T. J. Phys. Chem. B. 2003;107:14486–14499. doi: 10.1021/jp027667n. DOI
Kimura A. Kakitani T. J. Phys. Chem. A. 2007;111:12042–12048. doi: 10.1021/jp0734629. PubMed DOI
Kimura A. Kakitani T. Yamato T. J. Phys. Chem. B. 2000;104:9276–9287. doi: 10.1021/jp000589o. DOI
Kimura A. Kakitani T. Yamato T. Int. J. Mod. Phys. B. 2001;15:3833–3836. doi: 10.1142/S0217979201008780. DOI
Scholes G. D. J. Phys. Chem. 1996;100:18731–18739. doi: 10.1021/jp961784z. DOI
Kobori Y. Yago T. Akiyama K. Tero-Kubota S. Sato H. Hirata F. Norris J. R. J. Phys. Chem. B. 2004;108:10226–10240. doi: 10.1021/jp036925t. DOI
Zimmt M. B. Waldeck D. H. J. Phys. Chem. A. 2003;107:3580–3597. doi: 10.1021/jp022213b. DOI
Lukas A. S. Bushard P. J. Wasielewski M. R. J. Phys. Chem. A. 2002;106:2074–2082. doi: 10.1021/jp012309q. DOI
Low J. Z. Sanders S. N. Campos L. M. Chem. Mater. 2015;27:5453–5463. doi: 10.1021/cm502366x. DOI
Balakirev D. O. Luponosov Y. N. Mannanov A. L. Pisarev S. A. Paraschuk D. Y. Ponomarenko S. A. J. Photonics Energy. 2018;8:044002.
Yi J. Zhang G. Yu H. Yan H. Nat. Rev. Mater. 2024;9:46–62. doi: 10.1038/s41578-023-00618-1. DOI