Uncovering intramolecular singlet fission at the root of the dual fluorescence of 1,4-bis(p-nitro-β-styryl)benzene in solution

. 2025 Aug 20 ; 16 (33) : 15129-15140. [epub] 20250715

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40704330

The exploration of singlet fission (SF) promises a pathway to many leaps forward including more efficient solar energy extraction and, more recently, organic-based quantum computing. Our study, through a joint experimental and computational approach, revolves around 1,4-bis(p-nitro-β-styryl)benzene (1) as the smallest molecule where the intramolecular transformation of the initially allowed 11Bu singlet state to the 21Ag excited state stops being ordinary internal conversion and becomes the first half of the SF process. Herein, we experimentally observe explicit breaking of the Kasha rule. Using femtosecond broadband fluorescence upconversion, we measure a dual fluorescence of 1 in solution from its two lowest singlet excited states of different symmetry. Femtosecond transient absorption (TA) and fluorescence upconversion spectroscopy of 1 in toluene reveal ultrafast (17 ± 5 ps), almost quantitative interconversion between 11B and 21A states. A sensitization bracketing experiment with ns-TA is used to analyze the T1 state of 1. Employing high-level ab initio extended multi-configuration quasi-degenerate 2nd-order perturbation theory (XMCQDPT2) calculations, we accurately model ground- and excited-state potential energy surfaces. 11B states are predominantly described by ordinary HOMO-LUMO excitation. 21A states can be projected in localized frontier molecular orbitals as an intramolecular strongly coupled triplet biexciton [1(T1T1)] with the inclusion of intramolecular charge-transfer states. Moreover, the experimental resemblance of 21A and T1 absorption is elucidated. The fluorescence temperature-dependence experiment further corroborates the XMCQDPT2 model accurate prediction of the 11B and 21A low barrier of crossing (ca. 600 cm-1). The concentration-dependent experiment shows a dramatic increase in triplet yield: up to 200% yield is obtained by ns-TA quantitative measurements. All the obtained results suggest the occurrence of an SF mechanism for the triplet production: intramolecular 1(T1T1) formation followed by intermolecular triplet separation aided by entropy and spatial separation.

Zobrazit více v PubMed

Smith M. B. Michl J. Chem. Rev. 2010;110:6891–6936. doi: 10.1021/cr1002613. PubMed DOI

Smith M. B. Michl J. Annu. Rev. Phys. Chem. 2013;64:361–386. doi: 10.1146/annurev-physchem-040412-110130. PubMed DOI

Miyata K. Conrad-Burton F. S. Geyer F. L. Zhu X. Y. Chem. Rev. 2019;119:4261–4292. doi: 10.1021/acs.chemrev.8b00572. PubMed DOI

Shockley W. Queisser H. J. J. Appl. Phys. 1961;32:510–519. doi: 10.1063/1.1736034. DOI

Hanna M. C. Nozik A. J. J. Appl. Phys. 2006;100:074510. doi: 10.1063/1.2356795. DOI

Daiber B. van den Hoven K. Futscher M. H. Ehrler B. ACS Energy Lett. 2021;6:2800–2808. doi: 10.1021/acsenergylett.1c00972. PubMed DOI PMC

Baldacchino A. J. Collins M. I. Nielsen M. P. Schmidt T. W. McCamey D. R. Tayebjee M. J. Y. Chem. Phys. Rev. 2022;3:021304. doi: 10.1063/5.0080250. DOI

Sharma T. Afroz M. A. Satapathi S. ACS Photonics. 2024;11:3922–3932. doi: 10.1021/acsphotonics.4c00087. DOI

Smyser K. E. Eaves J. D. Sci. Rep. 2020;10:18480. doi: 10.1038/s41598-020-75459-x. PubMed DOI PMC

Yamauchi A. Tanaka K. Fuki M. Fujiwara S. Kimizuka N. Ryu T. Saigo M. Onda K. Kusumoto R. Ueno N. Sato H. Kobori Y. Miyata K. Yanai N. Sci. Adv. 2024;10:eadi3147. doi: 10.1126/sciadv.adi3147. PubMed DOI PMC

Hosteny Jr R. P. Dunning T. H. Gilman R. R. Pipano A. Shavitt I. J. Chem. Phys. 1975;62:4764–4779. doi: 10.1063/1.430426. DOI

Levine B. G. Ko C. Quenneville J. MartÍnez T. J. Mol. Phys. 2006;104:1039–1051. doi: 10.1080/00268970500417762. DOI

Leng J. M. Jeglinski S. Wei X. Benner R. E. Vardeny Z. V. Guo F. Mazumdar S. Phys. Rev. Lett. 1994;72:156–159. doi: 10.1103/PhysRevLett.72.156. PubMed DOI

Österbacka R. Wohlgenannt M. Chinn D. Vardeny Z. V. Phys. Rev. B:Condens. Matter Mater. Phys. 1999;60:R11253–R11256. doi: 10.1103/PhysRevB.60.R11253. DOI

Österbacka R. Wohlgenannt M. Shkunov M. Chinn D. Vardeny Z. V. J. Chem. Phys. 2003;118:8905–8916. doi: 10.1063/1.1566937. DOI

Luo F.-T. Tao Y.-T. Ko S.-L. Chuen C.-H. Chen H. J. Mater. Chem. 2002;12:47–52. doi: 10.1039/B109392D. DOI

Baatout K. Mahmoudi C. Laajimi M. Ibn EL Hadj Rhouma F. Smida N. Majdoub M. Opt. Mater. 2023;146:114588. doi: 10.1016/j.optmat.2023.114588. DOI

Shimomura Y. Igawa K. Sasaki S. Sakakibara N. Goseki R. Konishi G. Chem.–Eur. J. 2022;28:e202201884. doi: 10.1002/chem.202201884. PubMed DOI PMC

Marri E. Pannacci D. Galiazzo G. Mazzucato U. Spalletti A. J. Phys. Chem. A. 2003;107:11231–11238. doi: 10.1021/jp035401q. DOI

Marri E. Elisei F. Mazzucato U. Pannacci D. Spalletti A. J. Photochem. Photobiol., A. 2006;177:307–313. doi: 10.1016/j.jphotochem.2005.06.010. DOI

Carlotti B. Elisei F. Mazzucato U. Spalletti A. Phys. Chem. Chem. Phys. 2015;17:14740–14749. doi: 10.1039/C5CP00291E. PubMed DOI

Busby E. Xia J. Wu Q. Low J. Z. Song R. Miller J. R. Zhu X.-Y. Campos L. M. Sfeir M. Y. Nat. Mater. 2015;14:426–433. doi: 10.1038/nmat4175. PubMed DOI

Basel B. S. Zirzlmeier J. Hetzer C. Reddy S. R. Phelan B. T. Krzyaniak M. D. Volland M. K. Coto P. B. Young R. M. Clark T. Thoss M. Tykwinski R. R. Wasielewski M. R. Guldi D. M. Chem. 2018;4:1092–1111.

Mencaroni L. Carlotti B. Elisei F. Marrocchi A. Spalletti A. Chem. Sci. 2022;13:2071–2078. doi: 10.1039/D1SC07175K. PubMed DOI PMC

Granovsky A. A. J. Chem. Phys. 2011;134:214113. doi: 10.1063/1.3596699. PubMed DOI

Ioffe I. N. Granovsky A. A. J. Chem. Theory Comput. 2013;9:4973–4990. doi: 10.1021/ct400647w. PubMed DOI

Ioffe I. N. Quick M. Quick M. T. Dobryakov A. L. Richter C. Granovsky A. A. Berndt F. Mahrwald R. Ernsting N. P. Kovalenko S. A. J. Am. Chem. Soc. 2017;139:15265–15274. doi: 10.1021/jacs.7b09611. PubMed DOI

Park J. W. J. Chem. Theory Comput. 2021;17:6122–6133. doi: 10.1021/acs.jctc.1c00613. PubMed DOI

Park W. Shen J. Lee S. Piecuch P. Filatov M. Choi C. H. J. Phys. Chem. Lett. 2021;12:9720–9729. doi: 10.1021/acs.jpclett.1c02707. PubMed DOI

Park J. W. Al-Saadon R. MacLeod M. K. Shiozaki T. Vlaisavljevich B. Chem. Rev. 2020;120:5878–5909. doi: 10.1021/acs.chemrev.9b00496. PubMed DOI

Montalti M., Credi A., Prodi L. and Gandolfi M. T., Handbook of Photochemistry, CRC Press, Boca Raton, 3rd edn, 2006

Edhborg F. Olesund A. Albinsson B. Photochem. Photobiol. Sci. 2022;21:1143–1158. doi: 10.1007/s43630-022-00219-x. PubMed DOI

Snellenburg J. J. Laptenok S. Seger R. Mullen K. M. van Stokkum I. H. M. J. Stat. Softw. 2012;49:1–22.

Reynolds L. Gardecki J. A. Frankland S. J. V. Horng M. L. Maroncelli M. J. Phys. Chem. 1996;100:10337–10354. doi: 10.1021/jp953110e. DOI

Carmichael I. Hug G. L. J. Phys. Chem. Ref. Data. 1986;15:1–250. doi: 10.1063/1.555770. DOI

Margulies E. A. Miller C. E. Wu Y. Ma L. Schatz G. C. Young R. M. Wasielewski M. R. Nat. Chem. 2016;8:1120–1125. doi: 10.1038/nchem.2589. PubMed DOI

Almlöf J. and Taylor P. R., in Advances in Quantum Chemistry, ed. P.-O. Löwdin, J. R. Sabin and M. C. Zerner, Academic Press, 1991, vol. 22, pp. 301–373

Plasser F. Mewes S. A. Dreuw A. González L. J. Chem. Theory Comput. 2017;13:5343–5353. doi: 10.1021/acs.jctc.7b00718. PubMed DOI

Schulten K. Karplus M. Chem. Phys. Lett. 1972;14:305–309. doi: 10.1016/0009-2614(72)80120-9. DOI

Antognazza M. R. Lüer L. Polli D. Christensen R. L. Schrock R. R. Lanzani G. Cerullo G. Chem. Phys. 2010;373:115–121. doi: 10.1016/j.chemphys.2010.03.002. DOI

Papagiannakis E. Kennis J. T. M. van Stokkum I. H. M. Cogdell R. J. van Grondelle R. Proc. Natl. Acad. Sci. U. S. A. 2002;99:6017–6022. doi: 10.1073/pnas.092626599. PubMed DOI PMC

Gradinaru C. C. Kennis J. T. M. Papagiannakis E. van Stokkum I. H. M. Cogdell R. J. Fleming G. R. Niederman R. A. van Grondelle R. Proc. Natl. Acad. Sci. U. S. A. 2001;98:2364–2369. doi: 10.1073/pnas.051501298. PubMed DOI PMC

Tavan P. Schulten K. Phys. Rev. B:Condens. Matter Mater. Phys. 1987;36:4337–4358. doi: 10.1103/PhysRevB.36.4337. PubMed DOI

Wang L. Zhang T.-S. Fu L. Xie S. Wu Y. Cui G. Fang W.-H. Yao J. Fu H. J. Am. Chem. Soc. 2021;143:5691–5697. doi: 10.1021/jacs.0c11681. PubMed DOI

Chandross M. Shimoi Y. Mazumdar S. Synth. Met. 1997;85:1001–1006. doi: 10.1016/S0379-6779(97)80132-4. DOI

Gelessus A. Thiel W. Weber W. J. Chem. Educ. 1995;72:505. doi: 10.1021/ed072p505. DOI

Nesbet R. K. Proc. R. Soc. London, Ser. A. 1955;230:322–330.

Orlandi G. Siebrand W. J. Chem. Phys. 1973;58:4513–4523. doi: 10.1063/1.1679014. DOI

Yong C. K. Musser A. J. Bayliss S. L. Lukman S. Tamura H. Bubnova O. Hallani R. K. Meneau A. Resel R. Maruyama M. Hotta S. Herz L. M. Beljonne D. Anthony J. E. Clark J. Sirringhaus H. Nat. Commun. 2017;8:15953. doi: 10.1038/ncomms15953. PubMed DOI PMC

Stern H. L. Cheminal A. Yost S. R. Broch K. Bayliss S. L. Chen K. Tabachnyk M. Thorley K. Greenham N. Hodgkiss J. M. Anthony J. Head-Gordon M. Musser A. J. Rao A. Friend R. H. Nat. Chem. 2017;9:1205–1212. doi: 10.1038/nchem.2856. PubMed DOI

Musser A. J. Clark J. Annu. Rev. Phys. Chem. 2019;70:323–351. doi: 10.1146/annurev-physchem-042018-052435. PubMed DOI

Lukman S. Richter J. M. Yang L. Hu P. Wu J. Greenham N. C. Musser A. J. J. Am. Chem. Soc. 2017;139:18376–18385. doi: 10.1021/jacs.7b10762. PubMed DOI

Polak D. W. Andrews I. Salvadori E. Musser A. J. Auty A. Chekulaev D. Weinstein J. A. Heeney M. Clark J. J. Am. Chem. Soc. 2025;147:662–668. doi: 10.1021/jacs.4c12877. PubMed DOI PMC

Bartocci G. Mazzucato U. Chem. Phys. Lett. 1977;47:541–544. doi: 10.1016/0009-2614(77)85036-7. DOI

Mazzucato U. Momicchioli F. Chem. Rev. 1991;91:1679–1719. doi: 10.1021/cr00008a002. DOI

Marconi G. Bartocci G. Mazzucato U. Spalletti A. Abbate F. Angeloni L. Castellucci E. Chem. Phys. 1995;196:383–393. doi: 10.1016/0301-0104(95)00075-Y. DOI

Ogawa K. Suzuki H. Futakami M. J. Chem. Soc., Perkin Trans. 2. 1988:39–43. doi: 10.1039/P29880000039. DOI

Ciorba S. Galiazzo G. Mazzucato U. Spalletti A. J. Phys. Chem. A. 2010;114:10761–10768. doi: 10.1021/jp105383e. PubMed DOI

Havlas Z. Michl J. Isr. J. Chem. 2016;56:96–106. doi: 10.1002/ijch.201500054. DOI

Miller C. E. Wasielewski M. R. Schatz G. C. J. Phys. Chem. C. 2017;121:10345–10350. doi: 10.1021/acs.jpcc.7b02697. DOI

Johnson J. C. Commun. Chem. 2021;4:1–3. doi: 10.1038/s42004-020-00440-8. PubMed DOI PMC

Mencaroni L. Elisei F. Marrocchi A. Spalletti A. Carlotti B. J. Phys. Chem. B. 2024;128:3442–3453. doi: 10.1021/acs.jpcb.4c00194. PubMed DOI

Mauck C. M. Hartnett P. E. Margulies E. A. Ma L. Miller C. E. Schatz G. C. Marks T. J. Wasielewski M. R. J. Am. Chem. Soc. 2016;138:11749–11761. doi: 10.1021/jacs.6b05627. PubMed DOI

Rais D. Toman P. Pfleger J. Acharya U. Panthi Y. R. Menšík M. Zhigunov A. Thottappali M. A. Vala M. Marková A. Stříteský S. Weiter M. Cigánek M. Krajčovič J. Pauk K. Imramovský A. Zaykov A. Michl J. ChemPlusChem. 2020;85:2689–2703. doi: 10.1002/cplu.202000623. PubMed DOI

Alebardi M. Munzone C. Sorbelli E. Grasso A. Mencaroni L. Elisei F. Fortuna C. G. Spalletti A. Bonaccorso C. Carlotti B. Adv. Funct. Mater. 2024;34:2403706. doi: 10.1002/adfm.202403706. DOI

Ryerson J. L. Zaykov A. Suarez L. E. A. Havenith R. W. A. Stepp B. R. Dron P. I. Kaleta J. Akdag A. Teat S. J. Magnera T. F. Miller J. R. Havlas Z. Broer R. Faraji S. Michl J. Johnson J. C. J. Chem. Phys. 2019;151:184903. doi: 10.1063/1.5121863. PubMed DOI

Kaleta J. Dudič M. Ludvíková L. Liška A. Zaykov A. Rončević I. Mašát M. Bednárová L. Dron P. I. Teat S. J. Michl J. J. Org. Chem. 2023;88:6573–6587. doi: 10.1021/acs.joc.2c02706. PubMed DOI PMC

Sanders S. N. Pun A. B. Parenti K. R. Kumarasamy E. Yablon L. M. Sfeir M. Y. Campos L. M. Chem. 2019;5:1988–2005.

Marcus M. Barford W. Phys. Rev. B:Condens. Matter Mater. Phys. 2020;102:035134. doi: 10.1103/PhysRevB.102.035134. DOI

Millington O. Montanaro S. Sharma A. Dowland S. A. Winkel J. Grüne J. Leventis A. Bennett T. Shaikh J. Greenham N. Rao A. Bronstein H. J. Am. Chem. Soc. 2024;146:29664–29674. doi: 10.1021/jacs.4c10483. PubMed DOI PMC

Mencaroni L. Alebardi M. Elisei F. Škorić I. Spalletti A. Carlotti B. Phys. Chem. Chem. Phys. 2023;25:21089–21099. doi: 10.1039/D3CP02805D. PubMed DOI

Barford W. Phys. Rev. B:Condens. Matter Mater. Phys. 2022;106:035201. doi: 10.1103/PhysRevB.106.035201. DOI

Hartnett P. E. Margulies E. A. Mauck C. M. Miller S. A. Wu Y. Wu Y.-L. Marks T. J. Wasielewski M. R. J. Phys. Chem. B. 2016;120:1357–1366. doi: 10.1021/acs.jpcb.5b10565. PubMed DOI

Korovina N. V. Chang C. H. Johnson J. C. Nat. Chem. 2020;12:391–398. doi: 10.1038/s41557-020-0422-7. PubMed DOI

Pensack R. D. Ostroumov E. E. Tilley A. J. Mazza S. Grieco C. Thorley K. J. Asbury J. B. Seferos D. S. Anthony J. E. Scholes G. D. J. Phys. Chem. Lett. 2016;7:2370–2375. doi: 10.1021/acs.jpclett.6b00947. PubMed DOI

Wang Z. Zhang C. Wang R. Wang G. Wang X. Xiao M. J. Chem. Phys. 2019;151:134309. doi: 10.1063/1.5110188. PubMed DOI

Wang Z. Liu H. Xie X. Zhang C. Wang R. Chen L. Xu Y. Ma H. Fang W. Yao Y. Sang H. Wang X. Li X. Xiao M. Nat. Chem. 2021;13:559–567. doi: 10.1038/s41557-021-00665-7. PubMed DOI

Abraham V. Mayhall N. J. J. Phys. Chem. Lett. 2021;12:10505–10514. doi: 10.1021/acs.jpclett.1c03217. PubMed DOI

Volek T. S. Verkamp M. A. Ruiz G. N. Staat A. J. Li B. C. Rose M. J. Eaves J. D. Roberts S. T. J. Am. Chem. Soc. 2024;146:29575–29587. doi: 10.1021/jacs.4c09923. PubMed DOI

Singh A. Röhr M. I. S. J. Chem. Theory Comput. 2024;20:8624–8633. doi: 10.1021/acs.jctc.4c00473. PubMed DOI

Trinh M. T. Zhong Y. Chen Q. Schiros T. Jockusch S. Sfeir M. Y. Steigerwald M. Nuckolls C. Zhu X. J. Phys. Chem. C. 2015;119:1312–1319. doi: 10.1021/jp512650g. DOI

Chen M. Powers-Riggs N. E. Coleman A. F. Young R. M. Wasielewski M. R. J. Phys. Chem. C. 2020;124:2791–2798. doi: 10.1021/acs.jpcc.9b10397. DOI

Chen M. Coleman A. F. Young R. M. Wasielewski M. R. J. Phys. Chem. C. 2021;125:6999–7009. doi: 10.1021/acs.jpcc.0c10979. DOI

He G. Parenti K. R. Campos L. M. Sfeir M. Y. Adv. Mater. 2022;34:2203974. doi: 10.1002/adma.202203974. PubMed DOI

Nakamura S. Sakai H. Fuki M. Kobori Y. Tkachenko N. V. Hasobe T. J. Phys. Chem. Lett. 2021;12:6457–6463. doi: 10.1021/acs.jpclett.1c01430. PubMed DOI

Nakamura S. Sakai H. Fuki M. Ooie R. Ishiwari F. Saeki A. Tkachenko N. V. Kobori Y. Hasobe T. Angew. Chem., Int. Ed. 2023;62:e202217704. doi: 10.1002/anie.202217704. PubMed DOI

Kolomeisky A. B. Feng X. Krylov A. I. J. Phys. Chem. C. 2014;118:5188–5195. doi: 10.1021/jp4128176. DOI

Kakitani T. Kimura A. Sumi H. J. Phys. Chem. B. 1999;103:3720–3726. doi: 10.1021/jp9832185. DOI

Kimura A. Kakitani T. J. Phys. Chem. B. 2003;107:14486–14499. doi: 10.1021/jp027667n. DOI

Kimura A. Kakitani T. J. Phys. Chem. A. 2007;111:12042–12048. doi: 10.1021/jp0734629. PubMed DOI

Kimura A. Kakitani T. Yamato T. J. Phys. Chem. B. 2000;104:9276–9287. doi: 10.1021/jp000589o. DOI

Kimura A. Kakitani T. Yamato T. Int. J. Mod. Phys. B. 2001;15:3833–3836. doi: 10.1142/S0217979201008780. DOI

Scholes G. D. J. Phys. Chem. 1996;100:18731–18739. doi: 10.1021/jp961784z. DOI

Kobori Y. Yago T. Akiyama K. Tero-Kubota S. Sato H. Hirata F. Norris J. R. J. Phys. Chem. B. 2004;108:10226–10240. doi: 10.1021/jp036925t. DOI

Zimmt M. B. Waldeck D. H. J. Phys. Chem. A. 2003;107:3580–3597. doi: 10.1021/jp022213b. DOI

Lukas A. S. Bushard P. J. Wasielewski M. R. J. Phys. Chem. A. 2002;106:2074–2082. doi: 10.1021/jp012309q. DOI

Low J. Z. Sanders S. N. Campos L. M. Chem. Mater. 2015;27:5453–5463. doi: 10.1021/cm502366x. DOI

Balakirev D. O. Luponosov Y. N. Mannanov A. L. Pisarev S. A. Paraschuk D. Y. Ponomarenko S. A. J. Photonics Energy. 2018;8:044002.

Yi J. Zhang G. Yu H. Yan H. Nat. Rev. Mater. 2024;9:46–62. doi: 10.1038/s41578-023-00618-1. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...