Identifying the neurodevelopmental and psychiatric signatures of genomic disorders associated with intellectual disability: a machine learning approach
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
MR/T033371/1
Medical Research Council - United Kingdom
Department of Health - United Kingdom
MRF-154-0001-RG-SKUSE
MRF_ - United Kingdom
MRF-058-0015-F-CHAW-C0867
MRF_ - United Kingdom
MR/T033045/1
Medical Research Council - United Kingdom
MR/T04604X/1
Medical Research Council - United Kingdom
MR/L011166/1
Medical Research Council - United Kingdom
U01 MH119738
NIMH NIH HHS - United States
MR/N022572/1
Medical Research Council - United Kingdom
MR/L010305/1
Medical Research Council - United Kingdom
PubMed
37221545
PubMed Central
PMC10207854
DOI
10.1186/s13229-023-00549-2
PII: 10.1186/s13229-023-00549-2
Knihovny.cz E-zdroje
- Klíčová slova
- Behavioural phenotypes, Genetic syndromes, Intellectual disability, Machine learning,
- MeSH
- dítě MeSH
- genomika MeSH
- kohortové studie MeSH
- lidé MeSH
- mentální retardace * MeSH
- mladiství MeSH
- poruchy autistického spektra * MeSH
- průřezové studie MeSH
- strojové učení MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Genomic conditions can be associated with developmental delay, intellectual disability, autism spectrum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presentation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to identify young people with genomic conditions associated with neurodevelopmental disorders (ND-GCs) who could benefit from further support would be of considerable value. We used machine learning approaches to address this question. METHOD: A total of 493 individuals were included: 389 with a ND-GC, mean age = 9.01, 66% male) and 104 siblings without known genomic conditions (controls, mean age = 10.23, 53% male). Primary carers completed assessments of behavioural, neurodevelopmental and psychiatric symptoms and physical health and development. Machine learning techniques (penalised logistic regression, random forests, support vector machines and artificial neural networks) were used to develop classifiers of ND-GC status and identified limited sets of variables that gave the best classification performance. Exploratory graph analysis was used to understand associations within the final variable set. RESULTS: All machine learning methods identified variable sets giving high classification accuracy (AUROC between 0.883 and 0.915). We identified a subset of 30 variables best discriminating between individuals with ND-GCs and controls which formed 5 dimensions: conduct, separation anxiety, situational anxiety, communication and motor development. LIMITATIONS: This study used cross-sectional data from a cohort study which was imbalanced with respect to ND-GC status. Our model requires validation in independent datasets and with longitudinal follow-up data for validation before clinical application. CONCLUSIONS: In this study, we developed models that identified a compact set of psychiatric and physical health measures that differentiate individuals with a ND-GC from controls and highlight higher-order structure within these measures. This work is a step towards developing a screening instrument to identify young people with ND-GCs who might benefit from further specialist assessment.
Centre for Academic Mental Health Population Health Sciences University of Bristol Bristol UK
Department of Kinanthropology Charles University Prague Czechia
Department of Medical Genetics University of Cambridge Cambridge UK
Department of Psychiatry University of Cambridge Cambridge UK
Zobrazit více v PubMed
Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–764. doi: 10.1016/j.ajhg.2010.04.006. PubMed DOI PMC
Smajlagić D, Lavrichenko K, Berland S, Helgeland Ø, Knudsen GP, Vaudel M, et al. Population prevalence and inheritance pattern of recurrent CNVs associated with neurodevelopmental disorders in 12,252 newborns and their parents. Eur J Hum Genet. 2021;29(1):205–215. doi: 10.1038/s41431-020-00707-7. PubMed DOI PMC
Yang EH, Shin YB, Choi SH, Yoo HW, Kim HY, Kwak MJ, et al. Chromosomal microarray in children with developmental delay: the experience of a tertiary center in Korea. Front Pediatr. 2021;9:690493. doi: 10.3389/fped.2021.690493. PubMed DOI PMC
Yuan H, Shangguan S, Li Z, Luo J, Su J, Yao R, et al. CNV profiles of Chinese pediatric patients with developmental disorders. Genet Med Off J Am Coll Med Genet. 2021;23(4):669–678. PubMed
Rees E, Walters JTR, Georgieva L, Isles AR, Chambert KD, Richards AL, et al. Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry. 2014;204(2):108–114. doi: 10.1192/bjp.bp.113.131052. PubMed DOI PMC
Devlin B, Scherer SW. Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev. 2012;22(3):229–237. doi: 10.1016/j.gde.2012.03.002. PubMed DOI
Coe BP, Witherspoon K, Rosenfeld J, van Bon BWM, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46(10):1063–1071. doi: 10.1038/ng.3092. PubMed DOI PMC
Niarchou M, Zammit S, van Goozen SH, Thapar A, Tierling HM, Owen MJ, et al. Psychopathology and cognition in children with 22q11.2 deletion syndrome. Br J Psychiatry. 2014;204(1):46–54. doi: 10.1192/bjp.bp.113.132324. PubMed DOI PMC
Eaton CB, Thomas RH, Hamandi K, Payne GC, Kerr MP, Linden DEJ, et al. Epilepsy and seizures in young people with 22q11.2 deletion syndrome: prevalence and links with other neurodevelopmental disorders. Epilepsia. 2019;60(5):818–829. doi: 10.1111/epi.14722. PubMed DOI PMC
Cunningham A, Delport S, Cumines W, Busse M, Linden D, Hall J, et al. Developmental coordination disorder, psychopathology and IQ in 22q11.2 deletion syndrome. Br J Psychiatry. 2017;212(01):27–33. doi: 10.1192/bjp.2017.6. PubMed DOI PMC
Moulding HA, Bartsch U, Hall J, Jones MW, Linden DE, Owen MJ, et al. Sleep problems and associations with psychopathology and cognition in young people with 22q11.2 deletion syndrome (22q11.2DS) Psychol Med. 2019;50(7):1191–1202. doi: 10.1017/S0033291719001119. PubMed DOI
Schneider M, Debbané M, Bassett AS, Chow EWC, Fung WLA, Van Den Bree MBM, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. Am J Psychiatry. 2014;171(6):627–639. doi: 10.1176/appi.ajp.2013.13070864. PubMed DOI PMC
Chawner SJRA, Owen MJ, Holmans P, Raymond FL, Skuse D, Hall J, et al. Genotype-phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): a case-control cohort study. Lancet Psychiatry. 2019;6(6):493–505. doi: 10.1016/S2215-0366(19)30123-3. PubMed DOI
Kendall KM, Rees E, Escott-Price V, Einon M, Thomas R, Hewitt J, et al. Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK biobank subjects. Biol Psychiatry. 2017;82(2):103–110. doi: 10.1016/j.biopsych.2016.08.014. PubMed DOI
Crawford K, Bracher-Smith M, Owen D, Kendall KM, Rees E, Pardiñas AF, et al. Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. J Med Genet. 2018 doi: 10.1136/jmedgenet-2018-105477. PubMed DOI
Niarchou M, Martin J, Thapar A, Owen MJ, van den Bree MBM. The clinical presentation of attention deficit-hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2015;168(8):730–738. doi: 10.1002/ajmg.b.32378. PubMed DOI PMC
Jopp DA, Keys CB. Diagnostic overshadowing reviewed and reconsidered. Am J Ment Retard AJMR. 2001;106(5):416–433. doi: 10.1352/0895-8017(2001)106<0416:DORAR>2.0.CO;2. PubMed DOI
Reiss S, Szyszko J. Diagnostic overshadowing and professional experience with mentally retarded persons. Am J Ment Defic. 1983;87(4):396–402. PubMed
Mason J, Scior K. ‘Diagnostic overshadowing’ amongst clinicians working with people with intellectual disabilities in the UK. J Appl Res Intellect Disabil. 2004;17(2):85–90. doi: 10.1111/j.1360-2322.2004.00184.x. DOI
Gothelf D, Gruber R, Presburger G, Dotan I, Brand-Gothelf A, Burg M, et al. Methylphenidate treatment for attention-deficit/hyperactivity disorder in children and adolescents with velocardiofacial syndrome: an open-label study. J Clin Psychiatry. 2003;64(10):1163–1169. doi: 10.4088/JCP.v64n1004. PubMed DOI
Tyrer F, Dunkley AJ, Singh J, Kristunas C, Khunti K, Bhaumik S, et al. Multimorbidity and lifestyle factors among adults with intellectual disabilities: a cross-sectional analysis of a UK cohort. J Intellect Disabil Res. 2019;63(3):255–265. doi: 10.1111/jir.12571. PubMed DOI
Wolstencroft J, Wicks F, Srinivasan R, Wynn S, Ford T, Baker K, et al. Neuropsychiatric risk in children with intellectual disability of genetic origin: IMAGINE, a UK national cohort study. Lancet Psychiatry. 2022;S2215–0366(22):00207–213. PubMed PMC
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet. 2015;17(5):405–424. PubMed PMC
Chawner SJRA, Owen MJ, Holmans P, Raymond FL, Skuse D, Hall J, et al. Genotype–phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): a case-control cohort study. Lancet Psychiatry. 2019;6:493–505. doi: 10.1016/S2215-0366(19)30123-3. PubMed DOI
Angold A, Prendergast M, Cox A, Harrington R, Simonoff E, Rutter M. The child and adolescent psychiatric assessment (CAPA) Psychol Med. 2009;25(04):739. doi: 10.1017/S003329170003498X. PubMed DOI
Goodman R. The extended version of the strengths and difficulties questionnaire as a guide to child psychiatric caseness and consequent burden. J Child Psychol Psychiatry. 1999;40(5):791–799. doi: 10.1111/1469-7610.00494. PubMed DOI
Rutter M, Bailey A, Lord C. Social communication questionnaire. Los Angeles: Western Psychological Services; 2003.
Cunningham AC, Hall J, Owen MJ, van den Bree MBM. Coordination difficulties, IQ and psychopathology in children with high-risk copy number variants. Psychol Med. 2019 doi: 10.1017/S0033291719003210. PubMed DOI PMC
Van Aken K, Swillen A, Beirinckx M, Janssens L, Caeyenberghs K, Smits-Engelsman B. Kinematic movement strategies in primary school children with 22q11.2 Deletion Syndrome compared to age- and IQ-matched controls during visuo-manual tracking. Res Dev Disabil. 2010;31(3):768–776. doi: 10.1016/j.ridd.2010.01.019. PubMed DOI
Wilson BN, Crawford SG. The developmental coordination disorder questionnaire 2007. Phys Occup Ther Pediatr. 2012;29(2):182–202. doi: 10.1080/01942630902784761. PubMed DOI
Development Core Team R . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011.
Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;7(350):g7594. doi: 10.1136/bmj.g7594. PubMed DOI
Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: an R package for ’omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11):e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. doi: 10.18637/jss.v033.i01. PubMed DOI PMC
Wright MN, Ziegler A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;31(77):1–17.
Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab: an S4 package for kernel methods in R. J Stat Softw. 2004;2(11):1–20.
Venables WN, Ripley BD. Modern applied statistics with S [Internet]. New York: Springer; 2002 [cited 2023 Feb 20]. (Chambers J, Eddy W, Härdle W, Sheather S, Tierney L, editors. Statistics and Computing). 10.1007/978-0-387-21706-2.
Kuhn M, Johnson K. Applied Predictive Modeling [Internet] Berlin: Springer; 2013.
Biecek P. DALEX: explainers for complex predictive models in R. J Mach Learn Res. 2018;19(84):1–5.
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3. PubMed DOI
Christensen AP, Golino H. Estimating the stability of psychological dimensions via bootstrap exploratory graph analysis: a Monte Carlo simulation and tutorial. Psych. 2021;3(3):479–500. doi: 10.3390/psych3030032. DOI
Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: network visualizations of relationships in psychometric data. J Stat Softw. 2012;48(1):1–18.
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst. 2006;1695:1–9.
Christensen AP, Golino H. Estimating the stability of the number of factors via bootstrap exploratory graph analysis: a tutorial [Internet]. PsyArXiv; 2019 [cited 2021 Mar 17]. https://psyarxiv.com/9deay/
Steinman KJ, Spence SJ, Ramocki MB, Proud MB, Kessler SK, Marco EJ, et al. 16p11.2 deletion and duplication: characterizing neurologic phenotypes in a large clinically ascertained cohort. Am J Med Genet A. 2016;170(11):2943–2955. doi: 10.1002/ajmg.a.37820. PubMed DOI
Chawner SJ, Watson CJ, Owen MJ. Clinical evaluation of patients with a neuropsychiatric risk copy number variant. Curr Opin Genet Dev. 2021;1(68):26–34. doi: 10.1016/j.gde.2020.12.012. PubMed DOI PMC
Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu T, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43(9):838–846. doi: 10.1038/ng.909. PubMed DOI PMC
Chawner SJRA, Doherty JL, Anney RJL, Antshel KM, Bearden CE, Bernier R, et al. A genetics-first approach to dissecting the heterogeneity of autism: phenotypic comparison of autism risk copy number variants. Am J Psychiatry. 2021;178(1):77–86. doi: 10.1176/appi.ajp.2020.20010015. PubMed DOI PMC
Chawner SJRA, Evans A, IMAGINE-ID consortium. Williams N, Owen MJ, Hall J, et al. Sleep disturbance as a transdiagnostic marker of psychiatric risk in children with neurodevelopmental risk genetic conditions. Transl Psychiatry. 2023;13(1):7. doi: 10.1038/s41398-022-02296-z. PubMed DOI PMC
Cunningham AC, Hall J, Einfeld S, Owen MJ, Bree MBM van den. Emotional and behavioural phenotypes in young people with neurodevelopmental CNVs. medRxiv. 2020; 2020.01.28.20019133.
Kendall KM, Rees E, Bracher-Smith M, Legge S, Riglin L, Zammit S, et al. Association of rare copy number variants with risk of depression. JAMA Psychiatry. 2019;76(8):818–825. doi: 10.1001/jamapsychiatry.2019.0566. PubMed DOI PMC
Meehan AJ, Lewis SJ, Fazel S, Fusar-Poli P, Steyerberg EW, Stahl D, et al. Clinical prediction models in psychiatry: a systematic review of two decades of progress and challenges. Mol Psychiatry. 2022;27(6):2700–2708. doi: 10.1038/s41380-022-01528-4. PubMed DOI PMC