• This record comes from PubMed

A median fin derived from the lateral plate mesoderm and the origin of paired fins

. 2023 Jun ; 618 (7965) : 543-549. [epub] 20230524

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
F31 HL167580 NHLBI NIH HHS - United States
K99 HL168148 NHLBI NIH HHS - United States
T32 GM141742 NIGMS NIH HHS - United States

Links

PubMed 37225983
PubMed Central PMC10266977
DOI 10.1038/s41586-023-06100-w
PII: 10.1038/s41586-023-06100-w
Knihovny.cz E-resources

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.

See more in PubMed

Coates MI. The evolution of paired fins. Theory Biosci. 2003;122:266–287. doi: 10.1007/s12064-003-0057-4. DOI

Freitas R, Zhang G, Cohn MJ. Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature. 2006;442:1033–1037. doi: 10.1038/nature04984. PubMed DOI

Gegenbaur, C. Elements of Comparative Anatomy (Macmillan and Company, 1878).

Balfour FM. On the development of the skeleton of the paired fins of Elasmobranchii, considered in relation to its bearings on the nature of the limbs of the Vertebrata. Proc. Zool. Soc. Lond. 1881;49:656–670. doi: 10.1111/j.1096-3642.1881.tb01323.x. DOI

Mivart SG. Notes on the fins of elasmobranchs, with considerations on the nature and homologues of vertebrate limbs. Trans. Zool. Soc. Lond. 1879;10:439–484. doi: 10.1111/j.1096-3642.1879.tb00460.x. DOI

Gillis JA, Dahn RD, Shubin NH. Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc. Natl Acad. Sci. USA. 2009;106:5720–5724. doi: 10.1073/pnas.0810959106. PubMed DOI PMC

Diogo R. Cranial or postcranial—dual origin of the pectoral appendage of vertebrates combining the fin-fold and gill-arch theories? Dev. Dyn. 2020;249:1182–1200. doi: 10.1002/dvdy.192. PubMed DOI

Bemis, W. E. & Grande, L. in Mesozoic Fishes 2: Systematics and Fossil Record. (eds Arratia, G. & Schultze, H.-P.) 41–68 Vrelag Dr. F. Pfeil, 1999).

Zhang XG, Hou XG. Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys ercaicunensis. J. Evol. Biol. 2004;17:1162–1166. doi: 10.1111/j.1420-9101.2004.00741.x. PubMed DOI

Shu DG, et al. Lower Cambrian vertebrates from south China. Nature. 1999;402:42–46. doi: 10.1038/46965. DOI

Wilson, M. V. H., Hanke, G. F. & Märss, T. in Major Transitions in Vertebrate Evolution (eds Anderson, J. & Sues, H.-D.) Ch. 3, 122–149 (Indiana Univ. Press, 2007).

Sansom RS, Freedman KIM, Gabbott SE, Aldridge RJ, Purnell MA. Taphonomy and affinity of an enigmatic Silurian vertebrate, Jamoytius kerwoodi White. Palaeontology. 2010;53:1393–1409. doi: 10.1111/j.1475-4983.2010.01019.x. DOI

Sansom RS, Gabbott SE, Purnell MA. Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages. Biol. Lett. 2013;9:20130002. doi: 10.1098/rsbl.2013.0002. PubMed DOI PMC

Lee RT, Thiery JP, Carney TJ. Dermal fin rays and scales derive from mesoderm, not neural crest. Curr. Biol. 2013;23:R336–R337. doi: 10.1016/j.cub.2013.02.055. PubMed DOI

Taniguchi Y, et al. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae. Sci. Rep. 2015;5:11428. doi: 10.1038/srep11428. PubMed DOI PMC

Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev. Dyn. 2009;238:2975–3015. doi: 10.1002/dvdy.22113. PubMed DOI PMC

Shimada A, et al. Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 2013;4:1639. doi: 10.1038/ncomms2643. PubMed DOI PMC

Lee RT, Knapik EW, Thiery JP, Carney TJ. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme. Development. 2013;140:2923–2932. doi: 10.1242/dev.093534. PubMed DOI PMC

Okuda KS, et al. A zebrafish model of inflammatory lymphangiogenesis. Biol. Open. 2015;4:1270–1280. doi: 10.1242/bio.013540. PubMed DOI PMC

Asharani PV, et al. Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am. J. Hum. Genet. 2012;90:661–674. doi: 10.1016/j.ajhg.2012.02.026. PubMed DOI PMC

Prummel KD, et al. Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nat. Commun. 2022;13:1677. doi: 10.1038/s41467-022-29311-7. PubMed DOI PMC

Yelon D, et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development. 2000;127:2573–2582. doi: 10.1242/dev.127.12.2573. PubMed DOI

Yin C, Kikuchi K, Hochgreb T, Poss KD, Stainier DYR. Hand2 regulates extracellular matrix remodeling essential for gut-looping morphogenesis in zebrafish. Dev. Cell. 2010;18:973–984. doi: 10.1016/j.devcel.2010.05.009. PubMed DOI PMC

Mosimann C, et al. Chamber identity programs drive early functional partitioning of the heart. Nat. Commun. 2015;6:8146. doi: 10.1038/ncomms9146. PubMed DOI PMC

Richardson MK, Wright GM. Developmental transformations in a normal series of embryos of the sea lamprey Petromyzon marinus (Linnaeus) J. Morphol. 2003;257:348–363. doi: 10.1002/jmor.10119. PubMed DOI

Kemp A. Rearing of embryos and larvae of the Australian Lungfish, Neoceratodus forsteri, under laboratory conditions. Copeia. 1981;1981:776–784. doi: 10.2307/1444177. DOI

Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis 1 edn (Garland Publishing, 1994).

Hammerschmidt M, et al. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development. 1996;123:95–102. doi: 10.1242/dev.123.1.95. PubMed DOI

Kon T, et al. The genetic basis of morphological diversity in domesticated goldfish. Curr. Biol. 2020;30:2260–2274.e6. doi: 10.1016/j.cub.2020.04.034. PubMed DOI

Abe G, et al. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat. Commun. 2014;5:3360. doi: 10.1038/ncomms4360. PubMed DOI PMC

Watase S. On the caudal and anal fins of goldfishes. J. Sci. Coll. Imp. Univ. Tokyo. 1887;1:247–267.

Yonei-Tamura S, et al. Competent stripes for diverse positions of limbs/fins in gnathostome embryos. Evol. Dev. 2008;10:737–745. doi: 10.1111/j.1525-142X.2008.00288.x. PubMed DOI

Smith, B. G. in The Bashford Dean Memorial Volume: Archaic Fishes Vol. 2 (ed. E. W. Gudger) Article VI, 333–506 (The American Museum of Natural History, 1937)

Cole FJ. A monograph on the general morphology of the myxinoid fishes, based on a study of Myxine Part 1. The anatomy of the skeleton. Trans. R. Soc. Edinb. 1905;41:749–788. doi: 10.1017/S0080456800035572. DOI

Larouche O, Zelditch ML, Cloutier R. A critical appraisal of appendage disparity and homology in fishes. Fish Fish. 2019;20:1138–1175. doi: 10.1111/faf.12402. DOI

Blom H. New birkeniid anaspid from the Lower Devonian of Scotland and its phylogenetic implications. Palaeontology. 2012;55:641–652. doi: 10.1111/j.1475-4983.2012.01142.x. DOI

Kragl M, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460:60–65. doi: 10.1038/nature08152. PubMed DOI

Richardson LR. Neomyxine n.g. (Cyclostomata) based on Myxine biniplicata Richardson and Jowett 1951, and further data on the species. Trans. R. Soc. N. Z. 1953;81:379–383.

Donoghue PC, Forey PL, Aldridge RJ. Conodont affinity and chordate phylogeny. Biol. Rev. Camb. Philos. Soc. 2000;75:191–251. doi: 10.1017/S0006323199005472. PubMed DOI

Janvier P, Arsenault M. The anatomy of Euphanerops longaevus Woodward, 1900, an anaspid-like jawless vertebrate from the Upper Devonian of Miguasha, Quebec, Canada. Geodiversitas. 2007;29:143–216.

Blom H. A new anaspid fish from the Middle Silurian Cowie Harbour fish bed of Stonehaven, Scotland. J. Vert. Paleontol. 2008;28:594–600. doi: 10.1671/0272-4634(2008)28[594:ANAFFT]2.0.CO;2. DOI

Gai Z, et al. Galeaspid anatomy and the origin of vertebrate paired appendages. Nature. 2022;609:959–963. doi: 10.1038/s41586-022-04897-6. PubMed DOI

Ritchie A. The late Silurian anaspid genus Rhyncholepis from Oesel, Estonia, and Ringerike, Norway. Am. Mus. Novit. 1980;2699:1–18.

Mansfield JH, Holland ND. Amphioxus tails: source and fate of larval fin rays and the metamorphic transition from an ectodermal to a predominantly mesodermal tail. Acta Zool. 2015;96:117–125. doi: 10.1111/azo.12058. DOI

Tulenko FJ, et al. Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins. Proc. Natl Acad. Sci. USA. 2013;110:11899–11904. doi: 10.1073/pnas.1304210110. PubMed DOI PMC

Nuño de la Rosa L, Müller GB, Metscher BD. The lateral mesodermal divide: an epigenetic model of the origin of paired fins. Evol. Dev. 2014;16:38–48. doi: 10.1111/ede.12061. PubMed DOI

Iwamatsu T. Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 2004;121:605–618. doi: 10.1016/j.mod.2004.03.012. PubMed DOI

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI

Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev. Dyn. 2019;248:251–283. doi: 10.1002/dvdy.15. PubMed DOI PMC

Tahara Y. Normal stages of development in the lamprey, Lampetra reissneri (Dybowski) Zool. Sci. 1988;5:109–118.

Ballard WW, Mellinger J, Lechenault H. A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae) J. Exp. Zool. 1993;267:318–336. doi: 10.1002/jez.1402670309. DOI

Okuda KS, et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development. 2012;139:2381–2391. doi: 10.1242/dev.077701. PubMed DOI PMC

Kwan KM, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 2007;236:3088–3099. doi: 10.1002/dvdy.21343. PubMed DOI

Thermes V, et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 2002;118:91–98. doi: 10.1016/S0925-4773(02)00218-6. PubMed DOI

Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 2008;3:59–69. doi: 10.1038/nprot.2007.514. PubMed DOI

Feitosa NM, et al. Hemicentin 2 and Fibulin 1 are required for epidermal-dermal junction formation and fin mesenchymal cell migration during zebrafish development. Dev. Biol. 2012;369:235–248. doi: 10.1016/j.ydbio.2012.06.023. PubMed DOI PMC

Ablooglu AJ, Kang J, Handin RI, Traver D, Shattil SJ. The zebrafish vitronectin receptor: characterization of integrin alphaV and beta3 expression patterns in early vertebrate development. Dev. Dyn. 2007;236:2268–2276. doi: 10.1002/dvdy.21229. PubMed DOI

Kaneko H, Nakatani Y, Fujimura K, Tanaka M. Development of the lateral plate mesoderm in medaka Oryzias latipes and Nile tilapia Oreochromis niloticus: insight into the diversification of pelvic fin position. J. Anat. 2014;225:659–674. doi: 10.1111/joa.12244. PubMed DOI PMC

Davis MC, Dahn RD, Shubin NH. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature. 2007;447:473–476. doi: 10.1038/nature05838. PubMed DOI

Lea R, Bonev B, Dubaissi E, Vize PD, Papalopulu N. Multicolor fluorescent in situ mRNA hybridization (FISH) on whole mounts and sections. Methods Mol. Biol. 2012;917:431–444. doi: 10.1007/978-1-61779-992-1_24. PubMed DOI

Lea R, Papalopulu N, Amaya E, Dorey K. Temporal and spatial expression of FGF ligands and receptors during Xenopus development. Dev. Dyn. 2009;238:1467–1479. doi: 10.1002/dvdy.21913. PubMed DOI PMC

Gilchrist MJ, et al. Defining a large set of full-length clones from a Xenopus tropicalis EST project. Dev. Biol. 2004;271:498–516. doi: 10.1016/j.ydbio.2004.04.023. PubMed DOI

Cerny R, et al. Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc. Natl Acad. Sci. USA. 2010;107:17262–17267. doi: 10.1073/pnas.1009304107. PubMed DOI PMC

Kemp HA, Carmany-Rampey A, Moens C. Generating chimeric zebrafish embryos by transplantation. J. Vis. Exp. 2009;29:1394. PubMed PMC

Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. doi: 10.1186/1472-6793-9-11. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...