Dietary n-3/n-6 polyunsaturated fatty acid ratio modulates growth performance in spotted seabass (Lateolabrax maculatus) through regulating lipid metabolism, hepatic antioxidant capacity and intestinal health

. 2023 Sep ; 14 () : 20-31. [epub] 20230425

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37234947
Odkazy

PubMed 37234947
PubMed Central PMC10208799
DOI 10.1016/j.aninu.2023.04.005
PII: S2405-6545(23)00044-6
Knihovny.cz E-zdroje

An 8-week feeding experiment was carried out to explore the effects of dietary n-3/n-6 polyunsaturated fatty acid (PUFA) ratio on growth performance, lipid metabolism, hepatic antioxidant status, and gut flora of spotted seabass (Lateolabrax maculatus). Six experimental diets were formulated to contain different levels of two purified oil sources including docosahexaenoic and eicosapentaenoic acids enriched oil (n-3) and linoleic acid-enriched oil (n-6) leading to n-3/n-6 PUFA ratios of 0.04, 0.35, 0.66, 1.35, 2.45 and 16.17. Each diet was fed to triplicate groups of juvenile L. maculatus (11.06 ± 0.20 g, 30 fish/tank). Final body weight (FBW), weight gain (WG), specific growth rates (SGR), protein efficiency ratio (PER) and feed utilization efficiency increased as n-3/n-6 PUFA ratio increased up to a certain level, and then decreased thereafter. Fish fed the diet with n-3/n-6 PUFA ratio of 0.66 exhibited the highest FBW, WG, SGR and PER and the lowest feed conversion ratio. Lower n-3/n-6 PUFA ratios induced up-regulated expression of lipid synthesis-related genes (fas, acc2 and srebp-1c) and down-regulated expression of lipolysis related genes (atgl, pparα, cpt-1 and aox). Higher expression of lipolysis-related genes (atgl, pparα and cpt-1) was recorded at moderate n-3/n-6 PUFA ratios (0.66 to 1.35). Moreover, inappropriate n-3/n-6 PUFA ratios triggered up-regulation of pro-inflammatory genes (il-6 and tnf-α) and down-regulation of anti-inflammatory genes (il-4 and il-10) in the intestine. The diet with n-3/n-6 PUFA ratio of 0.66 inhibited intestine inflammation, improved intestinal flora richness, increased the abundance of beneficial bacteria such as Lactobacillus, Alloprevotella and Ruminococcus, and reduced the abundance of harmful bacteria including Escherichia-Shigella and Enterococcus. In summary, it could be suggested that a dietary n-3/n-6 PUFA ratio of 0.66 can improve growth performance and feed utilization in L. maculatus, as is deemed to be mediated through regulation of lipid metabolism and intestinal flora.

Zobrazit více v PubMed

AOAC . 18th ed. Association of Official Anlytical Chemists International; Gaithersburg, MD: 2005. Official methods of analysis.

Alagawany M., Elnesr S.S., Farag M.R., El-Sabrout K., Alqaisi O., Dawood M.A.O., Soomro H., Abdelnour S.A. Nutritional significance and health benefits of omega-3, -6 and -9 fatty acids in animals. Anim Biotechnol. 2021:1–13. PubMed

Ayala A., Munoz M.F., Argueelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014 PubMed PMC

Bandarra N.M., Rema P., Batista I., Pousão-Ferreira P., Valente L.M.P., Batista S.M.G., Ozório R.O.A. Effects of dietary n−3/n−6 ratio on lipid metabolism of gilthead seabream (Sparus aurata) Eur J Lipid Sci Technol. 2011;113:1332–1341.

Cai L.S., Wang L., Song K., Lu K.L., Zhang C.X., Rahimnejad S. Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress. Aquaculture. 2020;516

Campos I., Matos E., Maia M.R.G., Marques A., Valente L.M.P. Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquaculture. 2019;502:107–120.

Cattaneo A., Cattane N., Galluzzi S., Provasi S., Lopizzo N., Festari C., Ferrari C., Guerra U.P., Paghera B., Muscio C., Bianchetti A., Volta G.D., Turla M., Cotelli M.S., Gennuso M., Prelle A., Zanetti O., Lussignoli G., Mirabile D., Bellandi D., Gentile S., Belotti G., Villani D., Harach T., Bolmont T., Padovani A., Boccardi M., Frisoni G.B., Grp I.F. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–68. PubMed

Chen B., Li Y., Peng W., Zhou Z., Shi Y., Pu F., Luo X., Chen L., Xu P. Chromosome-level assembly of the Chinese seabass (Lateolabrax maculatus) genome. Front Genet. 2019;10:275. PubMed PMC

Cheng Y., Li X., Wang L., Lu K., Song K., Ai Q., Mai K., Zhang C. Effects of dietary arginine levels on growth, immune function of physical barriers and serum parameters of spotted seabass (Lateolabrax maculatus) reared at different water temperatures. Aquaculture. 2021;541

Childs M.T., King I.B., Knopp R.H. Divergent lipoprotein responses to fish oils with various ratios of eicosapentaenoic acid and docosahexaenoic acid. Am J Clin Nutr. 1990;52:632–639. PubMed

Clemente J.C., Manasson J., Scher J.U. The role of the gut microbiome in systemic inflammatory disease. BMJ Br Med J (Clin Res Ed) 2018;360:j5145. PubMed PMC

Contreas M.A., Rapoport S.I. Recent studies on interactions between n-3 and n-6 polyunsaturated fatty acids in brain and other tissues. Curr Opin Lipidol. 2002;13:267–272. PubMed

Dai Y., Zhang L., Yan Z., Li Z., Fu M., Xue C., Wang J. A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill (Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice. Food Funct. 2021;12:6766–6779. PubMed

Den Broeder M.J., Kopylova V.A., Kamminga L.M., Legler J. Zebrafish as a model to study the role of peroxisome proliferating-activated receptors in adipogenesis and obesity. PPAR Res. 2015 PubMed PMC

Dong Y.Z., Li L., Espe M., Lu K.L., Rahimnejad S. Hydroxytyrosol attenuates hepatic fat accumulation via activating mitochondrial biogenesis and autophagy through the AMPK pathway. J Agric Food Chem. 2020;68:9377–9386. PubMed

Dong Y., Yu M., Wu Y., Xia T., Wang L., Song K., Zhang C., Lu K., Rahimnejad S. Hydroxytyrosol promotes the mitochondrial function through activating mitophagy. Antioxidants. 2022;11:5. PubMed PMC

Du Z.Y., Clouet P., Zheng W.H., Degrace P., Tian L.X., Liu Y.J. Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets. Br J Nutr. 2006;95:905–915. PubMed

Dumas A., Lange C.F.M., France J., Bureau D.P. Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss) Aquaculture. 2007;273:165–181.

Fu Y., Wang Y., Gao H., Li D., Jiang R., Ge L., Tong C., Xu K. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediat Inflamm. 2021 PubMed PMC

Ghosh S., DeCoffe D., Brown K., Rajendiran E., Estaki M., Dai C., Yip A., Gibson D.L. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One. 2013;8 PubMed PMC

Glencross B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult. 2009;1:71–124.

Grant C.V., Loman B.R., Bailey M.T., Pyter L.M. Manipulations of the gut microbiome alter chemotherapy-induced inflammation and behavioral side effects in female mice. Brain Behav Immun. 2021;95:401–412. PubMed PMC

He L., Qin Y., Wang Y., Li D., Chen W., Ye J. Effects of dietary replacement of fish oil with soybean oil on the growth performance, plasma components, fatty acid composition and lipid metabolism of groupers Epinephelus coioides. Aquacult Nutr. 2021;27:1494–1511.

Heerwagen M.J.R., Stewart M.S., Houssaye B.A., Janssen R.C., Friedman J.E. Transgenic increase in N-3/N-6 fatty acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice. PLoS One. 2013;8:6. PubMed PMC

Harris W.S. The Omega-6:Omega-3 ratio: a critical appraisal and possible successor. Prostag Leukotr Ess. 2018;132:34–40. PubMed

Horton J.D., Goldstein J.L., Brown M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–1131. PubMed PMC

Hundal B.K., Liland N.S., Rosenlund G., Bou M., Stubhaug I., Sissener N.H. Increasing dietary n-6 fatty acids while keeping n-3 fatty acids stable decreases EPA in polar lipids of farmed Atlantic salmon (Salmo salar) Br J Nutr. 2021;125:10–25. PubMed

Hundal B.K., Liland N.S., Rosenlund G., Hoglund E., Araujo P., Stubhaug I., Sissener N.H. Increasing the dietary n-6/n-3 ratio alters the hepatic eicosanoid production after acute stress in Atlantic salmon (Salmo salar) Aquaculture. 2021;534

Husted K.S., Bouzinova E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina. 2016;52:139–147. PubMed

Jiang X., Gu S., Liu D., Zhao L., Xia S., He X., Chen H., Ge J. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-kappaB signaling cascades. Front Microbiol. 2018;9:2425. PubMed PMC

Jin M., Lu Y., Pan T., Zhu T., Yuan Y., Sun P., Zhou F., Ding X., Zhou Q. Effects of dietary n-3 LC-PUFA/n-6 C18 PUFA ratio on growth, feed utilization, fatty acid composition and lipid metabolism related gene expression in black seabream, Acanthopagrus schlegelii. Aquaculture. 2019;500:521–531.

Krajmalnik R., Ilhan Z., Kang D., DiBaise J. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27:201–214. PubMed PMC

Li X., Chen Q., Li Q., Li J., Cui K., Zhang Y., Kong A., Zhang Y., Wan M., Mai K., Ai Q. Effects of high levels of dietary linseed oil on the growth performance, antioxidant capacity, hepatic lipid metabolism, and expression of inflammatory genes in large yellow croaker (Larimichthys crocea) Front Physiol. 2021;12 PubMed PMC

Li X., Jiang Y., Liu W., Ge X. Protein-sparing effect of dietary lipid in practical diets for blunt snout bream (Megalobrama amblycephala) fingerlings: effects on digestive and metabolic responses. Fish Physiol Biochem. 2012;38:529–541. PubMed

Liu H.Q., Qiu Y., Mu Y., Zhang X.J., Liu L., Hou X.H., Zhang L., Xu X.N., Ji A.L., Cao R., Yang R.H., Wang F. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr Res. 2013;33:849–858. PubMed

Liu J.X., Gao T.X., Yokogawa K., Zhang Y.P. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phylogenet Evol. 2006;39:799–811. PubMed

Liu Z., Wang N., Ma Y., Wen D. Hydroxytyrosol improves obesity and insulin resistance by modulating gut microbiota in high-fat diet-induced obese mice. Front Microbiol. 2019;10:390. PubMed PMC

Liu Z.Y., Yang H.L., Hu L.H., Yang W., Ai C.X., Sun Y.Z. Autochthonous probiotics alleviate the adverse effects of dietary histamine in juvenile grouper (Epinephelus coioides) Front Microbiol. 2021;12 PubMed PMC

Lu K.L., Cai L.S., Wang L., Song K., Zhang C.X., Rahimnejad S. Effects of dietary protein/energy ratio and water temperature on growth performance, digestive enzymes activity and non-specific immune response of spotted seabass (Lateolabrax maculatus) Aquacult Nutr. 2020;26:2023–2031.

Lu K., Xu W., Li J., Li X., Huang G., Liu W. Alterations of liver histology and blood biochemistry in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Sci. 2013;79:661–671.

Lu K.L., Xu W.N., Liu W.B., Wang L.N., Zhang C.N., Li X.F. Association of mitochondrial dysfunction with oxidative stress and immune suppression in blunt snout bream Megalobrama amblycephala fed a high-fat diet. J Aquat Anim Health. 2014;26:100–112. PubMed

Mai K., Lu Z., Ai Q., Duan Q., Zhang C., Li H., Wan J., Liufu Z. Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture. 2006;258:535–542.

Marszalek J.R., Lodish H.F. Docosahexaenoic acid, fatty acid–interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol. 2005;21:633–657. PubMed

Mattioli S., Collodel G., Signorini C., Cotozzolo E., Noto D., Cerretani D., Micheli L., Fiaschi A.I., Brecchia G., Menchetti L., Moretti E., Oger C., De Felice C., Castellini C. Tissue antioxidant status and lipid peroxidation are related to dietary intake of n-3 polyunsaturated acids: a rabbit model. Antioxidants. 2021;10:681. PubMed PMC

Mohamadzadeh M., Pfeiler E.A., Brown J.B., Zadeh M., Gramarossa M., Managlia E., Bere P., Sarraj B., Khan M.W., Pakanati K.C., Ansari M.J., O'Flaherty S., Barrett T., Klaenhammer T.R. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. P Natl Acad Sci USA. 2011;108:4623–4630. PubMed PMC

Mokkala K., Houttu N., Cansev T., Laitinen K. Interactions of dietary fat with the gut microbiota: evaluation of mechanisms and metabolic consequences. Clin Nutr. 2020;39:994–1018. PubMed

Mommsen T.P. Paradigms of growth in fish. Comp Biochem Physiol B. 2001;129:207–219. PubMed

Murakami M., Tognini P., Liu Y., Eckel-Mahan K.L., Baldi P., Sassone-Corsi P. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Rep. 2016;17:1292–1303. PubMed PMC

Nasopoulou C., Zabetakis I. Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. Lebensm Wiss Technol. 2012;47:217–224.

Niu S.L., Mitchell D.C., Lim S.Y., Wen Z.M., Kim H.Y., Salem N., Litman B.J. Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J Biol Chem. 2004;279:31098–31104. PubMed

Pyper S.R., Viswakarma N., Yu S., Reddy J.K. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal. 2010;8 PubMed PMC

Sargent J., Bell G., McEvoy L., Tocher D., Estevez A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture. 1999;177:191–199.

Sargent J.R., Bell J.G., Bell M.V., Henderson R.J., Tocher D.R. Requirement criteria for essential fatty acids. J Appl Ichthyol. 1995;11:183–198.

Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–R462. PubMed PMC

Schmitz G., Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47:147–155. PubMed

Scorletti E., Byrne C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr. 2013;33:231–248. PubMed

Song J.Y., Zhang C.X., Wang L., Song K., Hu S.C., Zhang L. Effects of dietary calcium levels on growth and tissue mineralization in Japanese seabass, Lateolabrax japonicus. Aquacult Nutr. 2017;3:637–648.

Spadaro L., Magliocco O., Spampinato D., Piro S., Oliveri C., Alagonan C., Papa G., Rabuazzo A.M., Purrello F. Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease. Dig Liver Dis. 2008;40:194–199. PubMed

Tan P., Ding Y., Li X., Dong X., Mai K., Ai Q. Nrf2 pathway in vegetable oil-induced inflammation of large yellow croaker (Larimichthys crocea) Fish Shellfish Immunol. 2022;127:778–787. PubMed

Tocher D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci. 2003;11:107–184.

Torstensen B.E., Bell J.G., Rosenlund G., Henderson R.J., Graff I.E., Tocher D.R., Lie O., Sargent J.R. Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. J Agric Food Chem. 2005;53:10166–10178. PubMed

Turchini G.M., Torstensen B.E., Ng W.K. Fish oil replacement in finfish nutrition. Rev Aquacult. 2009;1:10–57.

Vélez E.J., Lutfi E., Azizi S., Perelló M., Salmerón C., Riera-Codina M., Ibarz A., Fernández-Borràs J., Blasco J., Capilla E., Navarro I., Gutiérrez J. Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture. 2017;467:28–40.

Venold F.F., Penn M.H., Krogdahl Å., Overturf K. Severity of soybean meal induced distal intestinal inflammation, enterocyte proliferation rate, and fatty acid binding protein (Fabp2) level differ between strains of rainbow trout (Oncorhynchus mykiss) Aquaculture. 2012;364–365:281–292.

Wang J., Liang D., Yang Q., Tan B., Dong X., Chi S., Liu H., Zhang S. The effect of partial replacement of fish meal by soy protein concentrate on growth performance, immune responses, gut morphology and intestinal inflammation for juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) Fish Shellfish Immunol. 2020;98:619–631. PubMed

Wang X., Xiao K., Jiang G.Z., Dai Y.J., Abasubong K., Wang M.M., Li X.F., Zhang D.D., Liu W.B. Dietary 18-carbon fatty acid unsaturation improves the muscle fiber development and meat quality of Megalobrama amblycephala. Aquacult Rep. 2022;24

Watanabe T. Lipid nutrition in fish. Comp Biochem Phys B. 1982;73:3–15.

Worgall T.S., Sturley S.L., Seo T., Osborne T.F., Deckelbaum R.J. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein. J Biol Chem. 1998;273:25537–25540. PubMed

Xie S., Lin Y., Wu T., Tian L., Liang J., Tan B. Dietary lipid levels affected growth performance, lipid accumulation, inflammatory response and apoptosis of Japanese seabass (Lateolabrax japonicus) Aquacult Nutr. 2021;27:807–816.

Xu J.H., Qin J., Yan B.L., Zhu M., Luo G. Effects of dietary lipid levels on growth performance, feed utilization and fatty acid composition of juvenile Japanese seabass (Lateolabrax japonicus) reared in seawater. Aquacult Int. 2011;19:79–89.

Xue M., Luo L., Wu X., Ren Z., Gao P., Yu Y., Pearl G. Effects of six alternative lipid sources on growth and tissue fatty acid composition in Japanese sea bass (Lateolabrax japonicus) Aquaculture. 2006;260:206–214.

Yang F., Li J., Pang G., Ren F., Fang B. Effects of diethyl phosphate, a non-specific metabolite of organophosphorus pesticides, on serum lipid, hormones, inflammation, and gut microbiota. Molecules. 2019;24:10. PubMed PMC

Yang X., Lu X., Lombès M., Rha G.B., Chi Y.I., Guerin T.M., Smart E.J., Liu J. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metabol. 2010;11:194–205. PubMed PMC

Ye Z., Xu Y.J., Liu Y. Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: a review. Trends Food Sci Technol. 2021;113:255–276.

Zechner R., Zimmermann R., Eichmann T.O., Kohlwein S.D., Haemmerle G., Lass A., Madeo F. FAT signals - lipases and lipolysis in lipid metabolism and signaling. Cell Metabol. 2012;15:279–291. PubMed PMC

Zarate R., Jaber-Vazdekis N., Tejera N., Perez J.A., Rodriguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med. 2017;6:25. PubMed PMC

Zhang J., Zhang S., Lu K., Wang L., Song K., Li X., et al. Effects of dietary phosphorus level on growth, body composition, liver histology and lipid metabolism of spotted seabass (Lateolabrax maculatus) reared in freshwater. Aquaculture and Fisheries. 2022;8:528–537.

Zhong Y.B., Kang Z.P., Wang M.X., Long J., Wang H.Y., Huang J.Q., Wei S.Y., Zhou W., Zhao H.M., Liu D.Y. Curcumin ameliorated dextran sulfate sodium-induced colitis via regulating the homeostasis of DCs and Treg and improving the composition of the gut microbiota. J Funct Foods. 2021;86

Zhou W., Rahimnejad S., Lu K., Wang L., Liu W. Effects of berberine on growth, liver histology, and expression of lipid-related genes in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. Fish Physiol Biochem. 2019;45:83–91. PubMed

Zhu H., He A., Chen L., Qin J., Li E., Li Q., Wang H., Zhang T., Su X. Effects of dietary lipid level and n-3/n-6 fatty acid ratio on growth, fatty acid composition and lipid peroxidation in Russian sturgeon Acipenser gueldenstaedtii. Aquacult Nutr. 2017;23:879–890.

Zhu S., Liu Q., Xiang X., Cui K., Zhao F., Mai K., et al. Docosahexaenoic acid ameliorates the toll-like receptor 22-triggered inflammation in fish by disrupting lipid raft formation. J Nutr. 2022;152:1991–2002. PubMed

Zuo R., Ai Q., Mai K., Xu W., Wang J., Xu H., Liufu Z., Zhang Y. Effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans) Aquaculture. 2012;334:101–109. PubMed

Zuo R., Ai Q., Mai K., Xu W., Wang J., Xu H., Liufu Z., Zhang Y. Effects of dietary n-3 highly unsaturated fatty acids on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans) Fish Shellfish Immunol. 2012;32:249–258. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...