X-ray spectroscopy meets native mass spectrometry: probing gas-phase protein complexes

. 2025 Jun 25 ; 27 (25) : 13234-13242. [epub] 20250625

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40304431

Gas-phase activation and dissociation studies of biomolecules, proteins and their non-covalent complexes using X-rays hold great promise for revealing new insights into the structure and function of biological samples. This is due to the unique properties of X-ray molecular interactions, such as site-specific and rapid ionization. In this perspective, we report and discuss the promise of first proof-of-principle studies of X-ray-induced dissociation of native (structurally preserved) biological samples ranging from small 17 kDa monomeric proteins up to large 808 kDa non-covalent protein assemblies conducted at a synchrotron (PETRA III) and a free-electron laser (FLASH2). A commercially available quadrupole time-of-flight mass spectrometer (Q-Tof Ultima US, Micromass/Waters), modified for high-mass analysis by MS Vision, was further adapted for integration with the open ports at the corresponding beamlines. The protein complexes were transferred natively into the gas phase via nano-electrospray ionization and subsequently probed by extreme ultraviolet (FLASH2) or soft X-ray (PETRA III) radiation, in either their folded state or following collision-induced activation in the gas phase. Depending on the size of the biomolecule and the activation method, protein fragmentation, dissociation, or enhanced ionization were observed. Additionally, an extension of the setup by ion mobility is described, which can serve as a powerful tool for structural separation of biomolecules prior to X-ray probing. The first experimental results are discussed in the broader context of current and upcoming X-ray sources, highlighting their potential for advancing structural biology in the future.

Center for Free Electron Laser Science Deutsches Elektronen Synchrotron 22607 Hamburg Germany

CSSB Centre for Structural Systems Biology Deutsches Elektronen Synchrotron DESY and Leibniz Institute of Virology and University of Lübeck Notkestraße 85 22607 Hamburg Germany

Department of Physics and Astronomy Uppsala University Box 516 75120 Uppsala Sweden

Deutsches Elektronen Synchrotron DESY Notkestraße 85 22607 Hamburg Germany

European XFEL Holzkoppel 4 22869 Schenefeld Germany

Faculty 5 School of Life Sciences University of Siegen Adolf Reichwein Str 2a 57076 Siegen Germany

Institut für Experimentelle und Angewandte Physik Christian Albrechts Universität zu Kiel Leibnizstr 19 24118 Kiel Germany

Institute of Chemistry and Metabolomics University of Lübeck Ratzeburger Allee 160 23562 Lübeck Germany

Institute of Microbiology Czech Academy of Sciences Videnska 1083 142 00 Prague Czech Republic

Institute of Physics University of Greifswald Felix Hausdorff Str 6 17489 Greifswald Germany

Institute of Resource Ecology Biophysics Division Helmholtz Zentrum Dresden Rossendorf e 5 Bautzner Landstraße 400 01328 Dresden Germany

Leibniz Institute of Virology Martinistraße 52 20251 Hamburg Germany

Molecular Physics Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 14195 Berlin Germany

MS Vision Televisieweg 40 1322 AM Almere The Netherlands

School of Biomedical Engineering International University Vietnam National University Ho Chi Minh City Vietnam

School of Science Constructor University Bremen gGmbH Research 2 111 Campus Ring 1 28759 Bremen Germany

Zernike Institute for Advanced Materials University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands

Zobrazit více v PubMed

Leney A. C. Heck A. J. R. Native Mass Spectrometry: What is in the Name? J. Am. Soc. Mass Spectrom. 2017;28:5–13. PubMed PMC

Karas M. Bahr U. Dülcks T. Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius’ J. Anal. Chem. 2000;366:669–676. PubMed

Lapthorn C. Pullen F. Chowdhry B. Z. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: Separating and assigning structures to ions. Mass Spectrom. Rev. 2013;32:43–71. PubMed

Seo J. Hoffmann W. Warnke S. Bowers M. T. Pagel K. von Helden G. Retention of Native Protein Structures in the Absence of Solvent: A Coupled Ion Mobility and Spectroscopic Study. Angew. Chem., Int. Ed. 2016;55:14173–14176. PubMed PMC

Esser T. K. Böhning J. Önür A. Chinthapalli D. K. Eriksson L. Grabarics M. Fremdling P. Konijnenberg A. Makarov A. Botman A. Peter C. Benesch J. L. P. Robinson C. V. Gault J. Baker L. Bharat T. A. M. Rauschenbach S. Cryo-EM of soft-landed β-galactosidase: Gas-phase and native structures are remarkably similar. Sci. Adv. 2024;10:eadl4628. PubMed PMC

Zhurov K. O. Fornelli L. Wodrich M. D. Laskay Ü. A. Tsybin Y. O. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 2013;42:5014–5030. PubMed

Snyder D. T. Harvey S. R. Wysocki V. H. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem. Rev. 2022;122:7442–7487. PubMed PMC

Maitre P. Scuderi D. Corinti D. Chiavarino B. Crestoni M. E. Fornarini S. Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chem. Rev. 2020;120:3261–3295. PubMed

Brodbelt J. S. Morrison L. J. Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev. 2020;120:3328–3380. PubMed PMC

McLuckey S. A. Goeringer D. E. Slow Heating Methods in Tandem Mass Spectrometry. J. Mass Spectrom. 1997;32:461–474.

Egorov D. Schwob L. Lalande M. Hoekstra R. Schlathölter T. Near edge X-ray absorption mass spectrometry of gas phase proteins: the influence of protein size. Phys. Chem. Chem. Phys. 2016;18:26213–26223. PubMed

Egorov D. Bari S. Boll R. Dörner S. Deinert S. Techert S. Hoekstra R. Zamudio-Bayer V. Lindblad R. Bülow C. Timm M. von Issendorff B. Lau J. T. Schlathölter T. Near-Edge Soft X-ray Absorption Mass Spectrometry of Protonated Melittin. J. Am. Soc. Mass Spectrom. 2018;29:2138–2151. PubMed

Bari S. Egorov D. Jansen T. L. C. Boll R. Hoekstra R. Techert S. Zamudio-Bayer V. Bülow C. Lindblad R. Leistner G. Ławicki A. Hirsch K. Miedema P. S. von Issendorff B. Lau J. T. Schlathölter T. Soft X-ray Spectroscopy as a Probe for Gas-Phase Protein Structure: Electron Impact Ionization from Within. Chem. – Eur. J. 2018;24:7631–7636. PubMed PMC

Dörner S. Schwob L. Atak K. Schubert K. Boll R. Schlathölter T. Timm M. Bülow C. Zamudio-Bayer V. von Issendorff B. Lau J. T. Techert S. Bari S. Probing Structural Information of Gas-Phase Peptides by Near-Edge X-ray Absorption Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021;32:670–684. PubMed

Zhou M. Lantz C. Brown K. A. Ge Y. Paša-Tolić L. Loo J. A. Lermyte F. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem. Sci. 2020;11:12918–12936. PubMed PMC

Liu R. Xia S. Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. Mass Spectrom. Rev. 2023;42:1876–1926. PubMed

Uetrecht C. Rose R. J. van Duijn E. Lorenzen K. Heck A. J. R. Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 2010;39:1633–1655. PubMed

Marklund E. G. Degiacomi M. T. Robinson C. V. Baldwin A. J. Benesch J. L. P. Collision Cross Sections for Structural Proteomics. Structure. 2015;23:791–799. PubMed

Narayanan S J J. Tripathi D. Verma P. Adhikary A. Dutta A. K. Secondary Electron Attachment-Induced Radiation Damage to Genetic Materials. ACS Omega. 2023;8:10669–10689. PubMed PMC

Viefhaus J. Scholz F. Deinert S. Glaser L. Ilchen M. Seltmann J. Walter P. Siewert F. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res., Sect. A. 2013;710:151–154.

Faatz B. Braune M. Hensler O. Honkavaara K. Kammering R. Kuhlmann M. Ploenjes E. Roensch-Schulenburg J. Schneidmiller E. Schreiber S. Tiedtke K. Tischer M. Treusch R. Vogt M. Wurth W. Yurkov M. Zemella J. The FLASH Facility: Advanced Options for FLASH2 and Future Perspectives. Appl. Sci. 2017;7:1114.

Pogan R. Weiss V. U. Bond K. Dülfer J. Krisp C. Lyktey N. Müller-Guhl J. Zoratto S. Allmaier G. Jarrold M. F. Muñoz-Fontela C. Schlüter H. Uetrecht C. N-terminal VP1 Truncations Favor T = 1 Norovirus-Like Particles. Vaccines. 2021;9:8. PubMed PMC

Pogan R. Schneider C. Reimer R. Hansman G. Uetrecht C. Norovirus-like VP1 particles exhibit isolate dependent stability profiles. J. Phys.: Condens. Matter. 2018;30:064006. PubMed PMC

Uetrecht C. Versluis C. Watts N. R. Roos W. H. Wuite G. J. L. Wingfield P. T. Steven A. C. Heck A. J. R. High-resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl. Acad. Sci. U. S. A. 2008;105:9216–9220. PubMed PMC

van den Heuvel R. H. H. van Duijn E. Mazon H. Synowsky S. A. Lorenzen K. Versluis C. Brouns S. J. J. Langridge D. van der Oost J. Hoyes J. Heck A. J. R. Improving the Performance of a Quadrupole Time-of-Flight Instrument for Macromolecular Mass Spectrometry. Anal. Chem. 2006;78:7473–7483. PubMed

Tiedtke K. Azima A. von Bargen N. Bittner L. Bonfigt S. Düsterer S. Faatz B. Frühling U. Gensch M. Gerth C. Guerassimova N. Hahn U. Hans T. Hesse M. Honkavaar K. Jastrow U. Juranic P. Kapitzki S. Keitel B. Kracht T. Kuhlmann M. Li W. B. Martins M. Núñez T. Plönjes E. Redlin H. Saldin E. L. Schneidmiller E. A. Schneider J. R. Schreiber S. Stojanovic N. Tavella F. Toleikis S. Treusch R. Weigelt H. Wellhöfer M. Wabnitz H. Yurkov M. V. Feldhaus J. The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations. New J. Phys. 2009;11:023029.

Rossbach J., in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications, ed. E. J. Jaeschke, S. Khan, J. R. Schneider and J. B. Hastings, Springer International Publishing, Cham, 2016, pp. 303–328

McCullough B. J. Kalapothakis J. Eastwood H. Kemper P. MacMillan D. Taylor K. Dorin J. Barran P. E. Development of an Ion Mobility Quadrupole Time of Flight Mass Spectrometer. Anal. Chem. 2008;80:6336–6344. PubMed

Kierspel T. Kadek A. Barran P. Bellina B. Bijedic A. Brodmerkel M. N. Commandeur J. Caleman C. Damjanović T. Dawod I. De Santis E. Lekkas A. Lorenzen K. López Morillo L. Mandl T. Marklund E. G. Papanastasiou D. Ramakers L. A. I. Schweikhard L. Simke F. Sinelnikova A. Smyrnakis A. Timneanu N. Uetrecht C. for the MS SPIDOC Consortium Coherent diffractive imaging of proteins and viral capsids: simulating MS SPIDOC. Anal. Bioanal. Chem. 2023;415:4209–4220. PubMed PMC

Caleman C. Ortiz C. Marklund E. Bultmark F. Gabrysch M. Parak F. G. Hajdu J. Klintenberg M. Tîmneanu N. Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhys. Lett. 2009;85:18005.

Kopicki J.-D. Saikia A. Niebling S. Günther C. Anjanappa R. Garcia-Alai M. Springer S. Uetrecht C. Opening opportunities for Kd determination and screening of MHC peptide complexes. Commun. Biol. 2022;5:488. PubMed PMC

Beardsley R. L. Jones C. M. Galhena A. S. Wysocki V. H. Noncovalent Protein Tetramers and Pentamers with “n” Charges Yield Monomers with n/4 and n/5 Charges. Anal. Chem. 2009;81:1347–1356. PubMed PMC

Kadek A. Lorenzen K. Uetrecht C. for the MS SPIDOC consortium In a flash of light: X-ray free electron lasers meet native mass spectrometry. Drug Discovery Today:Technol. 2021;39:89–99. PubMed

Kaleta D. T. Jarrold M. F. Helix–Turn–Helix Motifs in Unsolvated Peptides. J. Am. Chem. Soc. 2003;125:7186–7187. PubMed

Theisen A. Yan B. Brown J. M. Morris M. Bellina B. Barran P. E. Use of Ultraviolet Photodissociation Coupled with Ion Mobility Mass Spectrometry To Determine Structure and Sequence from Drift Time Selected Peptides and Proteins. Anal. Chem. 2016;88:9964–9971. PubMed

Liu F. C. Ridgeway M. E. Winfred J. S. R. V. Polfer N. C. Lee J. Theisen A. Wootton C. A. Park M. A. Bleiholder C. Tandem-trapped ion mobility spectrometry/mass spectrometry coupled with ultraviolet photodissociation. Rapid Commun. Mass Spectrom. 2021;35:e9192. PubMed PMC

Santos-Fernandez M. Jeanne Dit Fouque K. Fernandez-Lima F. Integration of Trapped Ion Mobility Spectrometry and Ultraviolet Photodissociation in a Quadrupolar Ion Trap Mass Spectrometer. Anal. Chem. 2023;95:8417–8422. PubMed PMC

Bari S. Gonzalez-Magaña O. Reitsma G. Werner J. Schippers S. Hoekstra R. Schlathölter T. Photodissociation of protonated leucine-enkephalin in the VUV range of 8–40 eV. J. Chem. Phys. 2011;134:024314. PubMed

Bellina B. Brown J. M. Ujma J. Murray P. Giles K. Morris M. Compagnon I. Barran P. E. UV photodissociation of trapped ions following ion mobility separation in a Q-ToF mass spectrometer. Analyst. 2014;139:6348–6351. PubMed

Warnke S. Baldauf C. Bowers M. T. Pagel K. von Helden G. Photodissociation of Conformer-Selected Ubiquitin Ions Reveals Site-Specific Cis/Trans Isomerization of Proline Peptide Bonds. J. Am. Chem. Soc. 2014;136:10308–10314. PubMed

Simon A.-L. Chirot F. Choi C. M. Clavier C. Barbaire M. Maurelli J. Dagany X. MacAleese L. Dugourd P. Tandem ion mobility spectrometry coupled to laser excitation. Rev. Sci. Instrum. 2015;86:094101. PubMed

Daly S. MacAleese L. Dugourd P. Chirot F. Combining Structural Probes in the Gas Phase – Ion Mobility-Resolved Action-FRET. J. Am. Soc. Mass Spectrom. 2018;29:133–139. PubMed

Caleman C. Huldt G. Maia F. R. N. C. Ortiz C. Parak F. G. Hajdu J. van der Spoel D. Chapman H. N. Timneanu N. On the Feasibility of Nanocrystal Imaging Using Intense and Ultrashort X-ray Pulses. ACS Nano. 2011;5:139–146. PubMed

Papanastasiou D. Kounadis D. Lekkas A. Orfanopoulos I. Mpozatzidis A. Smyrnakis A. Panagiotopoulos E. Kosmopoulou M. Reinhardt-Szyba M. Fort K. Makarov A. Zubarev R. A. The Omnitrap Platform: A Versatile Segmented Linear Ion Trap for Multidimensional Multiple-Stage Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2022;33:1990–2007. PubMed PMC

Östlin C. Tîmneanu N. Jönsson H. O. Ekeberg T. Martin A. V. Caleman C. Reproducibility of single protein explosions induced by X-ray lasers. Phys. Chem. Chem. Phys. 2018;20:12381–12389. PubMed

De Santis E. Dawod I. André T. Cardoch S. Timneanu N. Caleman C. Ultrafast X-ray laser-induced explosion: How the depth influences the direction of the ion trajectory. Europhys. Lett. 2024;148:17001.

Snijder J. Schuller J. M. Wiegard A. Lössl P. Schmelling N. Axmann I. M. Plitzko J. M. Förster F. Heck A. J. R. Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Science. 2017;355:1181–1184. PubMed

Sänger L. Williams H. M. Yu D. Vogel D. Kosinski J. Rosenthal M. Uetrecht C. RNA to Rule Them All: Critical Steps in Lassa Virus Ribonucleoparticle Assembly and Recruitment. J. Am. Chem. Soc. 2023;145:27958–27974. PubMed PMC

Zangl R. Soravia S. Saft M. Löffler J. G. Schulte J. Rosner C. J. Bredenbeck J. Essen L.-O. Morgner N. Time-Resolved Ion Mobility Mass Spectrometry to Solve Conformational Changes in a Cryptochrome. J. Am. Chem. Soc. 2024;146:14468–14478. PubMed

Schamoni-Kast K. Krichel B. Damjanović T. Kierspel T. Toker S. Uetrecht C. The kinetics of SARS-CoV-2 nsp7-11 polyprotein processing and impact on complexation with nsp16. bioRxiv. 2024 doi: 10.1101/2024.01.06.574466. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...