Coherent diffractive imaging of proteins and viral capsids: simulating MS SPIDOC
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2018-00740
Vetenskapsrådet
2020-04825
Vetenskapsrådet
2021-05988 SAXFELS
Vetenskapsrådet
801406
H2020 Future and Emerging Technologies
05K2016 Visavix
Bundesministerium für Bildung und Forschung
05K2022 SAXFELS
Bundesministerium für Bildung und Forschung
PubMed
37014373
PubMed Central
PMC10329076
DOI
10.1007/s00216-023-04658-y
PII: 10.1007/s00216-023-04658-y
Knihovny.cz E-zdroje
- Klíčová slova
- Modeling, Native MS, Protein complex structure, SPI, Simulation, Viral particles, X-ray,
- MeSH
- elektrony * MeSH
- kapsida * MeSH
- počítačová simulace MeSH
- rentgenové záření MeSH
- synchrotrony MeSH
- Publikační typ
- časopisecké články MeSH
MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.
Department of Chemistry BMC Uppsala University Box 576 75123 Uppsala Sweden
Department of Physics and Astronomy Uppsala University Box 516 75120 Uppsala Sweden
European XFEL Holzkoppel 4 22869 Schenefeld Germany
Faculty 5 School of Life Sciences University of Siegen Adolf Reichwein Str 2a 57076 Siegen Germany
Institut Für Physik Universität Greifswald Felix Hausdorff Str 6 17489 Greifswald Germany
Leibniz Institute of Virology Martinistraße 52 20251 Hamburg Germany
MS Vision Televisieweg 40 1322 AM Almere Netherlands
University of Applied Sciences Technikum Wien Höchstädtpl 6 1200 Vienna Austria
Zobrazit více v PubMed
Dülfer, J, Kadek, A, Kopicki, J.-D, Krichel, B, Uetrecht, C. “Structural mass spectrometry goes viral,” Adv Virus Res., vol. 105, Elsevier, 2019, pp. 189–238. 10.1016/bs.aivir.2019.07.003. PubMed
Kadek A, Lorenzen K, Uetrecht C. In a flash of light: X-ray free electron lasers meet native mass spectrometry. Drug Discov Today Technol. 2021;39:89–99. doi: 10.1016/j.ddtec.2021.07.001. PubMed DOI
Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources. Struct Dyn. 2020;7(4):040901. doi: 10.1063/4.0000024. PubMed DOI PMC
Bogan MJ, et al. Single particle X-ray diffractive imaging. Nano Lett. 2008;8(1):310–316. doi: 10.1021/nl072728k. PubMed DOI
Sobolev E, et al. Megahertz single-particle imaging at the European XFEL. Commun Phys. 2020;3(1):97. doi: 10.1038/s42005-020-0362-y. DOI
Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C. Controlling protein orientation in vacuum using electric fields. J Phys Chem Lett. 2017;8(18):4540–4544. doi: 10.1021/acs.jpclett.7b02005. PubMed DOI
Round A, Mancuso A. “SPB/SFX instrument review report,” no. REPORT. XFEL.EU TR-2022–002, 2022. 10.22003/XFEL.EU-TR-2022-002.
MS SPIDOC, “Report of deliverable D2.4: software pipeline for device modelling,” 2020. [Online]. Available: https://cordis.europa.eu/project/id/801406/results.
Dahl, DA. “Simion for the personal computer in reflection,” Vol. 200 State Field We Move New Millenium, vol. 200, no. 1, pp. 3–25, Dec. 2000, 10.1016/S1387-3806(00)00305-5.
“Mscube SIMAX.” [Online]. Available: https://mscube.co.nz/simax.html..
Papanastasiou D, et al. Experimental and numerical investigations of under-expanded gas flows for optimal operation of a novel multipole differential ion mobility filter in the first vacuum-stage of a mass spectrometer. Int J Mass Spectrom. 2021;465:116605. doi: 10.1016/j.ijms.2021.116605. DOI
van den Heuvel RHH, et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal Chem. 2006;78(21):7473–7483. doi: 10.1021/ac061039a. PubMed DOI
Simke F, Fischer P, Marx G, Schweikhard L. Simulations of a digital ion filter and a digital ion trap for heavy biomolecules. Int J Mass Spectrom. 2022;473:116779. doi: 10.1016/j.ijms.2021.116779. DOI
McCullough BJ, et al. Development of an ion mobility quadrupole time of flight mass spectrometer. Anal Chem. 2008;80(16):6336–6344. doi: 10.1021/ac800651b. PubMed DOI
Loh N-TD, Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys Rev E. 2009;80(2):026705. doi: 10.1103/PhysRevE.80.026705. PubMed DOI
Sinelnikova A, et al. Protein orientation in time-dependent electric fields: orientation before destruction. Biophys J. 2021;120(17):3709–3717. doi: 10.1016/j.bpj.2021.07.017. PubMed DOI PMC
Sinelnikova A, et al. Reproducibility in the unfolding process of protein induced by an external electric field. Chem Sci. 2021;12(6):2030–2038. doi: 10.1039/D0SC06008A. PubMed DOI PMC
Pogan R, Schneider C, Reimer R, Hansman G, Uetrecht C. Norovirus-like VP1 particles exhibit isolate dependent stability profiles. J Phys Condens. Matter. 2018;30(6):064006. doi: 10.1088/1361-648X/aaa43b. PubMed DOI PMC
Pogan R, et al. N-terminal VP1 truncations favor T = 1 norovirus-like particles. Vaccines. 2020;9(1):8. doi: 10.3390/vaccines9010008. PubMed DOI PMC
Fortmann-Grote C, et al. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCrJ. 2017;4(5):560–568. doi: 10.1107/S2052252517009496. PubMed DOI PMC
Mandl T, Östlin C, Dawod IE, Brodmerkel MN, Marklund EG, Martin AV, Timneanu N, Caleman C. Structural heterogeneity in single particle imaging using x-ray lasers. J Phys Chem Lett 2020;11(15):6077–83. 10.1021/acs.jpclett.0c01144. PubMed PMC
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291. PubMed DOI
Martin AV, Corso JK, Caleman C, Timneanu N, Quiney HM. Single-molecule imaging with longer X-ray laser pulses. IUCrJ. 2015;2(Pt 6):661–674. doi: 10.1107/S2052252515016887. PubMed DOI PMC
Östlin C, Timneanu N, Caleman C, Martin AV. Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers? Struct Dyn. 2019;6(4):044103. doi: 10.1063/1.5098309. PubMed DOI PMC
Seo J, Hoffmann W, Warnke S, Bowers MT, Pagel K, von Helden G. Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew Chem Int Ed. 2016;55(45):14173–14176. doi: 10.1002/anie.201606029. PubMed DOI PMC
Esser TK, Böhning J, Fremdling P, Bharat T, Gault J, Rauschenbach S. Cryo-EM samples of gas-phase purified protein assemblies using native electrospray ion-beam deposition. Faraday Discuss. 2022;240:67–80. doi: 10.1039/D2FD00065B. PubMed DOI PMC
Fremdling P, et al. A preparative mass spectrometer to deposit intact large native protein complexes. ACS Nano. 2022;16(9):14443–14455. doi: 10.1021/acsnano.2c04831. PubMed DOI PMC
Ayyer K, et al. 3D diffractive imaging of nanoparticle ensembles using an x-ray laser. Optica. 2021;8(1):15. doi: 10.1364/OPTICA.410851. DOI
Uetrecht C, et al. Native mass spectrometry provides sufficient ion flux for XFEL single-particle imaging. J Synchrotron Radiat. 2019;26(3):653–659. doi: 10.1107/S1600577519002686. PubMed DOI PMC
Uetrecht C, Barbu IM, Shoemaker GK, van Duijn E, Heck AJR. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem. 2011;3(2):126–132. doi: 10.1038/nchem.947. PubMed DOI
X-ray spectroscopy meets native mass spectrometry: probing gas-phase protein complexes