Coherent diffractive imaging of proteins and viral capsids: simulating MS SPIDOC

. 2023 Jul ; 415 (18) : 4209-4220. [epub] 20230404

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37014373

Grantová podpora
2018-00740 Vetenskapsrådet
2020-04825 Vetenskapsrådet
2021-05988 SAXFELS Vetenskapsrådet
801406 H2020 Future and Emerging Technologies
05K2016 Visavix Bundesministerium für Bildung und Forschung
05K2022 SAXFELS Bundesministerium für Bildung und Forschung

Odkazy

PubMed 37014373
PubMed Central PMC10329076
DOI 10.1007/s00216-023-04658-y
PII: 10.1007/s00216-023-04658-y
Knihovny.cz E-zdroje

MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.

Zobrazit více v PubMed

Dülfer, J, Kadek, A, Kopicki, J.-D, Krichel, B, Uetrecht, C. “Structural mass spectrometry goes viral,” Adv Virus Res., vol. 105, Elsevier, 2019, pp. 189–238. 10.1016/bs.aivir.2019.07.003. PubMed

Kadek A, Lorenzen K, Uetrecht C. In a flash of light: X-ray free electron lasers meet native mass spectrometry. Drug Discov Today Technol. 2021;39:89–99. doi: 10.1016/j.ddtec.2021.07.001. PubMed DOI

Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources. Struct Dyn. 2020;7(4):040901. doi: 10.1063/4.0000024. PubMed DOI PMC

Bogan MJ, et al. Single particle X-ray diffractive imaging. Nano Lett. 2008;8(1):310–316. doi: 10.1021/nl072728k. PubMed DOI

Sobolev E, et al. Megahertz single-particle imaging at the European XFEL. Commun Phys. 2020;3(1):97. doi: 10.1038/s42005-020-0362-y. DOI

Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C. Controlling protein orientation in vacuum using electric fields. J Phys Chem Lett. 2017;8(18):4540–4544. doi: 10.1021/acs.jpclett.7b02005. PubMed DOI

Round A, Mancuso A. “SPB/SFX instrument review report,” no. REPORT. XFEL.EU TR-2022–002, 2022. 10.22003/XFEL.EU-TR-2022-002.

MS SPIDOC, “Report of deliverable D2.4: software pipeline for device modelling,” 2020. [Online]. Available: https://cordis.europa.eu/project/id/801406/results.

Dahl, DA. “Simion for the personal computer in reflection,” Vol. 200 State Field We Move New Millenium, vol. 200, no. 1, pp. 3–25, Dec. 2000, 10.1016/S1387-3806(00)00305-5.

“Mscube SIMAX.” [Online]. Available: https://mscube.co.nz/simax.html..

Papanastasiou D, et al. Experimental and numerical investigations of under-expanded gas flows for optimal operation of a novel multipole differential ion mobility filter in the first vacuum-stage of a mass spectrometer. Int J Mass Spectrom. 2021;465:116605. doi: 10.1016/j.ijms.2021.116605. DOI

van den Heuvel RHH, et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal Chem. 2006;78(21):7473–7483. doi: 10.1021/ac061039a. PubMed DOI

Simke F, Fischer P, Marx G, Schweikhard L. Simulations of a digital ion filter and a digital ion trap for heavy biomolecules. Int J Mass Spectrom. 2022;473:116779. doi: 10.1016/j.ijms.2021.116779. DOI

McCullough BJ, et al. Development of an ion mobility quadrupole time of flight mass spectrometer. Anal Chem. 2008;80(16):6336–6344. doi: 10.1021/ac800651b. PubMed DOI

Loh N-TD, Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys Rev E. 2009;80(2):026705. doi: 10.1103/PhysRevE.80.026705. PubMed DOI

Sinelnikova A, et al. Protein orientation in time-dependent electric fields: orientation before destruction. Biophys J. 2021;120(17):3709–3717. doi: 10.1016/j.bpj.2021.07.017. PubMed DOI PMC

Sinelnikova A, et al. Reproducibility in the unfolding process of protein induced by an external electric field. Chem Sci. 2021;12(6):2030–2038. doi: 10.1039/D0SC06008A. PubMed DOI PMC

Pogan R, Schneider C, Reimer R, Hansman G, Uetrecht C. Norovirus-like VP1 particles exhibit isolate dependent stability profiles. J Phys Condens. Matter. 2018;30(6):064006. doi: 10.1088/1361-648X/aaa43b. PubMed DOI PMC

Pogan R, et al. N-terminal VP1 truncations favor T = 1 norovirus-like particles. Vaccines. 2020;9(1):8. doi: 10.3390/vaccines9010008. PubMed DOI PMC

Fortmann-Grote C, et al. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCrJ. 2017;4(5):560–568. doi: 10.1107/S2052252517009496. PubMed DOI PMC

Mandl T, Östlin C, Dawod IE, Brodmerkel MN, Marklund EG, Martin AV, Timneanu N, Caleman C. Structural heterogeneity in single particle imaging using x-ray lasers. J Phys Chem Lett 2020;11(15):6077–83. 10.1021/acs.jpclett.0c01144. PubMed PMC

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291. PubMed DOI

Martin AV, Corso JK, Caleman C, Timneanu N, Quiney HM. Single-molecule imaging with longer X-ray laser pulses. IUCrJ. 2015;2(Pt 6):661–674. doi: 10.1107/S2052252515016887. PubMed DOI PMC

Östlin C, Timneanu N, Caleman C, Martin AV. Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers? Struct Dyn. 2019;6(4):044103. doi: 10.1063/1.5098309. PubMed DOI PMC

Seo J, Hoffmann W, Warnke S, Bowers MT, Pagel K, von Helden G. Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew Chem Int Ed. 2016;55(45):14173–14176. doi: 10.1002/anie.201606029. PubMed DOI PMC

Esser TK, Böhning J, Fremdling P, Bharat T, Gault J, Rauschenbach S. Cryo-EM samples of gas-phase purified protein assemblies using native electrospray ion-beam deposition. Faraday Discuss. 2022;240:67–80. doi: 10.1039/D2FD00065B. PubMed DOI PMC

Fremdling P, et al. A preparative mass spectrometer to deposit intact large native protein complexes. ACS Nano. 2022;16(9):14443–14455. doi: 10.1021/acsnano.2c04831. PubMed DOI PMC

Ayyer K, et al. 3D diffractive imaging of nanoparticle ensembles using an x-ray laser. Optica. 2021;8(1):15. doi: 10.1364/OPTICA.410851. DOI

Uetrecht C, et al. Native mass spectrometry provides sufficient ion flux for XFEL single-particle imaging. J Synchrotron Radiat. 2019;26(3):653–659. doi: 10.1107/S1600577519002686. PubMed DOI PMC

Uetrecht C, Barbu IM, Shoemaker GK, van Duijn E, Heck AJR. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem. 2011;3(2):126–132. doi: 10.1038/nchem.947. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

X-ray spectroscopy meets native mass spectrometry: probing gas-phase protein complexes

. 2025 Jun 25 ; 27 (25) : 13234-13242. [epub] 20250625

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...