Screening of Antibiotic and Virulence Genes from Whole Genome Sequenced Cronobacter sakazakii Isolated from Food and Milk-Producing Environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GI 195420/EF
University of Bío-Bío
PubMed
37237754
PubMed Central
PMC10215236
DOI
10.3390/antibiotics12050851
PII: antibiotics12050851
Knihovny.cz E-zdroje
- Klíčová slova
- Cronobacter sakazakii, antibiotics resistance, environment, food, virulence genes, whole genome sequencing,
- Publikační typ
- časopisecké články MeSH
The objective of this study was to use whole-genome sequencing (WGS) to screen for genes encoding for antibiotic resistance, fitness and virulence in Cronobacter sakazakii strains that had been isolated from food and powdered-milk-producing environments. Virulence (VGs) and antibiotic-resistance genes (ARGs) were detected with the Comprehensive Antibiotic Resistance Database (CARD) platform, ResFinder and PlasmidFinder tools. Susceptibility testing was performed using disk diffusion. Fifteen presumptive strains of Cronobacter spp. were identified by MALDI-TOF MS and ribosomal-MLST. Nine C. sakazakii strains were found in the meningitic pathovar ST4: two were ST83 and one was ST1. The C. sakazakii ST4 strains were further distinguished using core genome MLST based on 3678 loci. Almost all (93%) strains were resistant to cephalotin and 33% were resistant to ampicillin. In addition, 20 ARGs, mainly involved in regulatory and efflux antibiotics, were detected. Ninety-nine VGs were detected that encoded for OmpA, siderophores and genes involved in metabolism and stress. The IncFIB (pCTU3) plasmid was detected, and the prevalent mobile genetic elements (MGEs) were ISEsa1, ISEc52 and ISEhe3. The C. sakazakii isolates analyzed in this study harbored ARGs and VGs, which could have contributed to their persistence in powdered-milk-producing environments, and increase the risk of infection in susceptible population groups.
Department of Food Engineering Universidad del Bío Bío Chillán 3800708 Chile
Department of Nutrition and Public Health Universidad del Bío Bío Chillán 3800708 Chile
FoodMicrobe com Ltd Adams Hill Keyworth Nottinghamshire NG12 5GY UK
Ptacy s r o Valasska Bystrice 194 75627 Valasska Bystrice Czech Republic
Zobrazit více v PubMed
Iversen C., Mullane N., Mc Cardell B., Tall B., Lehner A., Fanning S., Stephan R., Joosten H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov.comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov.subsp. dublinensis subsp. nov., C. dublinensis sp. nov.subsp. lausannensis subsp. nov., and C. dublinensis sp. nov.subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008;58:1442–1447. PubMed
Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M., Forsythe S. Cronobacter condimenti sp. Nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomoespecies 1, recovered from a leg infection, water and food ingredients. Int. J. Syst. Evol. Microbiol. 2012;62:1277–1283. doi: 10.1099/ijs.0.032292-0. PubMed DOI
Stephan R., Grim C., Gopinath G., Mammel M., Sathyamoorthy V., Trach L., Chase H., Fanning S., Tall B. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 2014;64:3402–3410. PubMed PMC
Forsythe S.J. Updates on the Cronobacter Genus. Annu. Rev. Food Sci. Technol. 2018;25:23–44. doi: 10.1146/annurev-food-030117-012246. PubMed DOI
Hariri S., Joseph S., Forsythe S.J. Cronobacter sakazakii ST4 strains and neonatal meningitis, United States. Emerg. Infect. Dis. 2013;19:175–177. doi: 10.3201/eid1901.120649. PubMed DOI PMC
Patrick M., Mahon B., Greene S., Rounds J., Conquist A., Wymore K., Boothe E., Lathrop S., Palmer A., Bowen A. Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg. Inf. Dis. 2014;20:1520–1523. doi: 10.3201/eid2009.140545. PubMed DOI PMC
Holý O., Cruz-Cordova A., Xicohtencatl-Cortés J., Hochel I., Parra-Flores J., Petrzelova J., Fačevicová K., Forsythe S., Alsonosi A. Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples. Microb. Pathog. 2019;127:250–256. doi: 10.1016/j.micpath.2018.12.011. PubMed DOI
Holý O., Forsythe S. Cronobacter spp. as emerging causes of healthcare-associated infection. J. Hosp. Infect. 2014;86:169–177. doi: 10.1016/j.jhin.2013.09.011. PubMed DOI
Baumgartner A., Grand M., Liniger M., Iversen C. Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int. J. Food Microbiol. 2009;136:189–192. doi: 10.1016/j.ijfoodmicro.2009.04.009. PubMed DOI
Vojkovska H., Karpiskova R., Orieskova M., Drahovska H. Characterization of Cronobacter spp. isolated from food of plant origin and environmental samples collected from farms and from supermarkets in the Czech Republic. Int. J. Food Microbiol. 2016;217:130–136. doi: 10.1016/j.ijfoodmicro.2015.10.017. PubMed DOI
Parra-Flores J., Maury-Sintjago E., Rodriguez-Fernández A., Acuña S., Cerda F., Aguirre J., Holý O. Microbiological quality of powdered infant formula in Latin America. J. Food. Prot. 2020;83:534–541. doi: 10.4315/0362-028X.JFP-19-399. PubMed DOI
Lindsay D., Laing S., Fouhy K.I., Souhoka L., Beaven A., Soboleva T., Malakar P. Quantifying the uncertainty of transfer of Cronobacter spp. between fomites and floors and touch points in dairy processing plants. Food Microbiol. 2019;84:103256. doi: 10.1016/j.fm.2019.103256. PubMed DOI
El-Sharoud W., O’Brien S., Negredo C., Iversen C., Fanning S., Healy B. Characterization of Cronobacter recovered from dried milk and related products. BMC Microbiol. 2009;9:24. doi: 10.1186/1471-2180-9-24. PubMed DOI PMC
Craven H.H., McAuley C.M., Duffy L.L., Fegan N. Distribution, prevalence and persistence of Cronobacter (Enterobacter sakazakii) in the non-processing and processing environments of five milk powder factories. J. Appl. Microbiol. 2010;109:1044–1052. doi: 10.1111/j.1365-2672.2010.04733.x. PubMed DOI
Franco A., Kothary M., Gopinath G., Jarvis K., Grim C., Hu L., Datta A., McCardell B.A., Tall B.D. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect. Immun. 2011;79:1578–1587. doi: 10.1128/IAI.01165-10. PubMed DOI PMC
Cruz-Córdova A., Rocha-Ramírez L., Ochoa S., Gónzalez-Pedrajo B., Espinosa N., Eslava C., Hernández-Chiñas U., Mendoza-Hernández G., Rodríguez-Leviz A., Valencia-Mayoral P., et al. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes. PLoS ONE. 2012;7:e52091. doi: 10.1371/journal.pone.0052091. PubMed DOI PMC
Aldubyan M., Almami I., Benslimane F., Alsonosi A., Forsythe S. Comparative outer membrane protein analysis of high and low-invasive strains of Cronobacter malonaticus. Front. Microbiol. 2017;8:2268. doi: 10.3389/fmicb.2017.02268. PubMed DOI PMC
Ogrodzki P., Forsythe S. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genom. 2015;16:758. doi: 10.1186/s12864-015-1960-z. PubMed DOI PMC
Lee Y.-D., Park J., Chang H. Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control. 2012;24:225–230. doi: 10.1016/j.foodcont.2011.09.023. DOI
Parra-Flores J., Holý O., Riffo F., Lepuschitz S., Maury-Sintjago E., Rodríguez-Fernández A., Cruz-Córdova A., Xicohtencatl-Cortes J., Mancilla-Rojano J., Troncoso M., et al. Profiling the virulence and antibiotic resistance genes of Cronobacter sakazakii strains isolated from powdered and dairy formulas by whole-genome sequencing. Front. Microbiol. 2021;12:694922. doi: 10.3389/fmicb.2021.694922. PubMed DOI PMC
Shi L., Liang Q., Zhan Z., Feng J., Zhao Y., Chen Y., Huang M., Tong Y., Wu W., Chen W., et al. Co-occurrence of 3 different resistance plasmids in a multi-drug resistant Cronobacter sakazakii isolate causing neonatal infections. Virulence. 2018;9:110–112. doi: 10.1080/21505594.2017.1356537. PubMed DOI PMC
Aly M.A., Domig K.J., Kneifel W., Reimhult E. Whole genome sequencing-based comparison of food isolates of Cronobacter sakazakii. Front. Microbiol. 2019;10:1464. doi: 10.3389/fmicb.2019.01464. PubMed DOI PMC
Leopold S., Goering R., Witten A., Harmsen D., Mellmann A. Bacterial whole-genome sequencing revisited: Portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J. Clin. Microbiol. 2014;52:2365–2370. doi: 10.1128/JCM.00262-14. PubMed DOI PMC
Lehner A., Tall B.D., Fanning S., Srikumar S. Cronobacter spp.—Opportunistic foodborne pathogens: An update on evolution, osmotic adaptation and pathogenesis. Curr. Clin. Micro. Rpt. 2018;5:97–105. doi: 10.1007/s40588-018-0089-7. DOI
Joseph S., Forsythe S. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front. Food Microbiol. 2012;3:397. doi: 10.3389/fmicb.2012.00397. PubMed DOI PMC
Fei P., Jiang Y., Jiang Y., Yuan X., Yang T., Chen J., Wang Z., Kang H., Forsythe S.J. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter sakazakii isolates from powdered infant formula collected from Chinese retail markets. Front. Microbiol. 2017;8:2026. doi: 10.3389/fmicb.2017.02026. PubMed DOI PMC
Sonbol H., Joseph S., McAuley C., Craven H., Forsythe S. Multilocus sequence typing of Cronobacter spp. from powdered infant formula and milk powder production factories. Int. Dairy J. 2013;30:1–7. doi: 10.1016/j.idairyj.2012.11.004. DOI
Csorba C., Pajić M., Blagojević B., Forsythe S., Radinović M., Velebit B. Prevalence, characterization, and antibiotic susceptibility of Cronobacter spp. in a milk powder processing environment: The first reported case in Serbia. Food Sc. Nutr. 2022;10:554–563. doi: 10.1002/fsn3.2681. PubMed DOI PMC
Grim C.J., Gopinath G.R., Jarvis K.G., Sathyamoorthy V., Trach L.H., Chase H.R., Tall B.D. Genome sequence of Cronobacter sakazakii serogroup O:4, sequence type 4 strain CDC 2009-03746, isolated from a fatal case of infantile meningitis. Genome Announc. 2015;3:e00492-15. doi: 10.1128/genomeA.00492-15. PubMed DOI PMC
Costa P.V., Vasconcellos L., Forsythe S.J., Brandão M.L. Diversity of Cronobacter genus isolated between 1970 and 2019 on the American continent and genotyped using multi-locus sequence typing. FEMS Microbiol. Lett. 2021;368:1–9. doi: 10.1093/femsle/fnab027. PubMed DOI
Lepuschitz S., Ruppitsch W., Pekard-Amenitsch S., Forsythe S.J., Cormican M., Mach R.L., Piérard D., Allerberger F., The EUCRONI Study Group Multicenter study of Cronobacter sakazakii infections in humans, Europe, 2017. Emerg. Infect. Dis. 2019;25:515–522. doi: 10.3201/eid2503.181652. PubMed DOI PMC
Hu J., Li X., Du X., Cui Z., Cui J. Identification and characterization of Cronobacter strains isolated from environmental samples. Curr. Microbiol. 2019;76:1467–1476. doi: 10.1007/s00284-019-01776-8. PubMed DOI
Pakbin B., Brück W.M., Allahyari S., Rossen J.W.A., Mahmoudi R. Antibiotic resistance and molecular characterization of Cronobacter sakazakii strains isolated from powdered infant formula milk. Foods. 2022;11:1093. doi: 10.3390/foods11081093. PubMed DOI PMC
Fei P., Jiang Y., Feng J., Forsythe S.J., Li R., Zhou Y., Man C. Antibiotic and desiccation resistance of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and processing environments. Front. Microbiol. 2017;8:316. doi: 10.3389/fmicb.2017.00316. PubMed DOI PMC
Kilonzo-Nthenge A., Rotich E., Godwin S., Nahashon S., Chen F. Prevalence and antimicrobial resistance of Cronobacter sakazakii isolated from domestic kitchens in middle Tennessee, United States. J. Food Prot. 2012;75:1512–1517. doi: 10.4315/0362-028X.JFP-11-442. PubMed DOI
Zurfluh K., Nuësch-Inderbinen M., Morach M., Zihler Berner A., Hächler H., Stephan R. Extended-spectrum-β-lactamaseproducing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. Appl. Environ. Microbiol. 2015;81:3115–3120. doi: 10.1128/AEM.00258-15. PubMed DOI PMC
Holý O., Alsonosi A., Hochel I., Röderová M., Zatloukalova S., Mlynárčik P., Kolář M., Petrželová J., Alazraq A., Chmelař D. Antibiotic susceptibility of Cronobacter spp. isolated from clinical samples. Pol. J. Microbiol. 2019;68:5–14. doi: 10.21307/pjm-2019-001. PubMed DOI PMC
Harvey K.L., Jarocki V.M., Charles I.G., Djordjevic S.P. The diverse functional roles of elongation Factor Tu (EF-Tu) in microbial pathogenesis. Front Microbiol. 2019;10:2351. doi: 10.3389/fmicb.2019.02351. PubMed DOI PMC
Müller A., Hächler H., Stephan R., Lehner A. Presence of AmpC beta-lactamases, CSA-1, CSA-2, CMA-1, and CMA-2 conferring an unusual resistance phenotype in Cronobacter sakazakii and Cronobacter malonaticus. Microb. Drug Resist. 2014;20:275–280. doi: 10.1089/mdr.2013.0188. PubMed DOI
Durand E., Cambillau C., Cascales E., Journet L. VgrG, Tae, Tle, and beyond: The versatile arsenal of type VI secretion effectors. Trends Microbiol. 2014;22:498–507. doi: 10.1016/j.tim.2014.06.004. PubMed DOI
Jang H., Gopinath G.R., Eshwar A., Srikumar S., Nguyen S., Gangiredla J., Patel I.R., Finkelstein S.B., Negrete F., Woo J., et al. The Secretion of toxins and other exoproteins of Cronobacter: Role in virulence, adaption, and persistence. Microorganisms. 2020;8:229. doi: 10.3390/microorganisms8020229. PubMed DOI PMC
Coulthurst S. The Type VI secretion system: A versatile bacterial weapon. Microbiology (Reading) 2019;165:503–515. doi: 10.1099/mic.0.000789. PubMed DOI
Singh N., Goel G., Raghav M. Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii. Virulence. 2015;6:433–440. doi: 10.1080/21505594.2015.1036217. PubMed DOI PMC
Mohan Nair M.K., Venkitanarayanan K. Role of bacterial OmpA and host cytoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii. Pediatr. Res. 2007;62:664–669. doi: 10.1203/PDR.0b013e3181587864. PubMed DOI
Joseph S., Hariri S., Masood N., Forsythe S. Sialic acid utilization by Cronobacter sakazakii. Microb. Inform. Exp. 2013;3:3. doi: 10.1186/2042-5783-3-3. PubMed DOI PMC
Wang B., McVeagh P., Petocz P., Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am. J. Clin. Nutr. 2003;78:1024–1029. doi: 10.1093/ajcn/78.5.1024. PubMed DOI
Severi E., Hood D.W., Thomas G.H. Sialic acid utilization by bacterial pathogens. Microbiology (Reading) 2007;153:2817–2822. doi: 10.1099/mic.0.2007/009480-0. PubMed DOI
Lee C., Wigren E., Lünsdorf H., Römling U. Protein homeostasis-more than resisting a hot bath. Curr. Opin. Microbiol. 2016;30:147–154. doi: 10.1016/j.mib.2016.02.006. PubMed DOI
Schellhorn H.E. Function, evolution, and composition of the RpoS regulon in Escherichia coli. Front. Microbiol. 2020;11:560099. doi: 10.3389/fmicb.2020.560099. PubMed DOI PMC
Bojer M.S., Struve C., Ingmer H., Hansen D.S., Krogfelt K.A. Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae. PLoS ONE. 2010;5:e15467. doi: 10.1371/journal.pone.0015467. PubMed DOI PMC
Boll E.J., Frimodt-Møller J., Olesen B., Krogfelt K.A., Struve C. Heat resistance in extended-spectrum beta-lactamase-producing Escherichia coli may favor environmental survival in a hospital setting. Res. Microbiol. 2016;167:345–349. doi: 10.1016/j.resmic.2016.02.002. PubMed DOI
Niu H., Mingzhe Y., Qi Y., Liu Y., Wang X., Dong Q. Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress. Food Microbiol. 2022;103:10394. doi: 10.1016/j.fm.2021.103948. PubMed DOI
Brooks K., Eze J., Onalenna O., Rahube T.O. Analysis of antibiotic resistance from a rural community and wastewater contaminated environment linked to human and animal activities. J. Hazard Mater. Adv. 2023;9:100232. doi: 10.1016/j.hazadv.2023.100232. DOI
Jang H., Eshwar A., Lehner A., Gangiredla J., Patel I.R., Beaubrun J.J.-G., Chase H.R., Negrete F., Finkelstein S., Weinstein L.M., et al. Characterization of Cronobacter sakazakii strains originating from plant-origin foods using comparative genomic analyses and zebrafish infectivity studies. Microorganisms. 2022;10:1396. doi: 10.3390/microorganisms10071396. PubMed DOI PMC
Iversen C., Forsythe S.J. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 2004;21:771–776. doi: 10.1016/j.fm.2004.01.009. DOI
Lepuschitz S., Sorschag S., Springer B., Allerberger F., Ruppitsch W. Draft genome sequence of carbapenemase-producing Serratia marcescens isolated from a patient with chronic obstructive pulmonary disease. Genome Announc. 2017;5:e01288-17. doi: 10.1128/genomeA.01288-17. PubMed DOI PMC
Jolley K.A., Bliss C.M., Bennett J.S., Bratcher H.B., Brehony C., Colles F.M., Wimalarathna H., Harrison O.B., Sheppard S.K., Cody A.J., et al. Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology (Reading) 2012;158:1005–1015. doi: 10.1099/mic.0.055459-0. PubMed DOI PMC
Bolger A., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Jünemann S., Sedlazeck F.J., Prior K., Albersmeier A., John U., Kalinowski J., Mellmann A., Goesmann A., von Haeseler A., Stoye J., et al. Updating benchtop sequencing performance comparison. Nat. Biotechnol. 2013;31:294–296. doi: 10.1038/nbt.2522. PubMed DOI
Baldwin A., Loughlin M., Caubilla-Barron J., Kucerova E., Manning G., Dowson C., Forsythe S. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance, which do not correlate with biotypes. BMC Microbiol. 2009;9:223. doi: 10.1186/1471-2180-9-223. PubMed DOI PMC
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Clinical and Laboratory Standars Institute Publisher Supplement M100; Wayne, PA, USA: 2020. pp. 1–263.
Bortolaia V., Kaas R.F., Ruppe E., Roberts M.C., Schwarz S., Cattoir V., Philippon A., Allesoe R.L., Rebelo A.R., Florensa A.R., et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC
Jia B., Raphenya A.R., Alcock B., Waglechner N., Guo P., Tsang K., Lago B., Dave B., Pereira S., Sharma A., et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573. doi: 10.1093/nar/gkw1004. PubMed DOI PMC
Carattoli A., Zankari E., García-Fernández A., Voldby-Larsen M., Lund O., Villa L., Møller-Aarestrup F., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Johansson M., Bortolaia V., Tansirichaiya S., Aarestrup F.M., Roberts A.P., Petersen T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2021;76:101–109. doi: 10.1093/jac/dkaa390. PubMed DOI PMC
Cechin C.D.F., Carvalho G.G., Bastos C.P., Kabuki D.Y. Cronobacter spp. in foods of plant origin: Occurrence, contamination routes, and pathogenic potential. Crit. Rev. Food Sci. Nutr. 2022;22:1–15. doi: 10.1080/10408398.2022.2101426. PubMed DOI
Gan X., Li M., Xu J., Yan S., Wang W., Li F. Emerging of multidrug-resistant Cronobacter sakazakii isolated from infant supplementary food in China. Microbiol. Spectr. 2022;10:0119722. doi: 10.1128/spectrum.01197-22. PubMed DOI PMC