Maintained Spatial Learning and Memory Functions in Middle-Aged α9 Nicotinic Receptor Subunit Knock-Out Mice

. 2023 May 12 ; 13 (5) : . [epub] 20230512

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37239266

Grantová podpora
1220607 Proyecto Fondecyt
FB0008 Proyecto Basal ANID
ICN09_015 Proyecto Milenio
Fundación Guillermo Puelma

Age-related hearing loss is linked to cognitive impairment, but the mechanisms that relate to these conditions remain unclear. Evidence shows that the activation of medial olivocochlear (MOC) neurons delays cochlear aging and hearing loss. Consequently, the loss of MOC function may be related to cognitive impairment. The α9/α10 nicotinic receptor is the main target of cholinergic synapses between the MOC neurons and cochlear outer hair cells. Here, we explored spatial learning and memory performance in middle-aged wild-type (WT) and α9-nAChR subunit knock-out (KO) mice using the Barnes maze and measured auditory brainstem response (ABR) thresholds and the number of cochlear hair cells as a proxy of cochlear aging. Our results show non-significant spatial learning differences between WT and KO mice, but KO mice had a trend of increased latency to enter the escape box and freezing time. To test a possible reactivity to the escape box, we evaluated the novelty-induced behavior using an open field and found a tendency towards more freezing time in KO mice. There were no differences in memory, ABR threshold, or the number of cochlear hair cells. We suggest that the lack of α9-nAChR subunit alters novelty-induced behavior, but not spatial learning in middle-aged mice, by a non-cochlear mechanism.

Zobrazit více v PubMed

Alzheimer’s Association 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2022;18:700–789. doi: 10.1002/alz.12638. PubMed DOI

Valentijn S.A.M., van Boxtel M.P.J., van Hooren S.A.H., Bosma H., Beckers H.J.M., Ponds R.W.H.M., Jolles J. Change in sensory functioning predicts change in cognitive functioning: Results from a 6-year follow-up in the Maastricht Aging Study. J. Am. Geriatr. Soc. 2005;53:374–380. doi: 10.1111/j.1532-5415.2005.53152.x. PubMed DOI

Lin F.R., Yaffe K., Xia J., Xue Q.L., Harris T.B., Purchase-Helzner E., Satterfield S., Ayonayon H.N., Ferrucci L., Simonsick E.M., et al. Hearing Loss and Cognitive Decline in Older Adults. Jama Intern. Med. 2013;173:293–299. doi: 10.1001/jamainternmed.2013.1868. PubMed DOI PMC

Lin F.R. Hearing Loss and Cognition Among Older Adults in the United States. J. Gerontol. A Biol. 2011;66:1131–1136. doi: 10.1093/gerona/glr115. PubMed DOI PMC

Uhlmann R.F., Larson E.B., Rees T.S., Koepsell T.D., Duckert L.G. Relationship of Hearing Impairment to Dementia and Cognitive Dysfunction in Older Adults. JAMA J. Am. Med. Assoc. 1989;261:1916–1919. doi: 10.1001/jama.1989.03420130084028. PubMed DOI

Livingston G., Sommerlad A., Orgeta V., Costafreda S.G., Huntley J., Ames D., Ballard C., Banerjee S., Burns A., Cohen-Mansfield J., et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734. doi: 10.1016/S0140-6736(17)31363-6. PubMed DOI

Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., Brayne J., Burns A., Cohen-Mansfield J., Cooper C., et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. doi: 10.1016/S0140-6736(20)30367-6. PubMed DOI PMC

Panza F., Solfrizzi V., Seripa D., Imbimbo B.P., Capozzo R., Quaranta N., Pilotto A., Logroscino G. Age-related hearing impairment and frailty in Alzheimer’s disease: Interconnected associations and mechanisms. Front. Aging Neurosci. 2015;7:113. doi: 10.3389/fnagi.2015.00113. PubMed DOI PMC

Huang A.R., Jiang K., Lin F.R., Deal J.A., Reed N.S. Hearing Loss and Dementia Prevalence in Older Adults in the US. JAMA. 2023;329:171–173. doi: 10.1001/jama.2022.20954. PubMed DOI PMC

Gates G.A., Mills J.H. Presbycusis. Lancet. 2005;366:1111–1120. doi: 10.1016/S0140-6736(05)67423-5. PubMed DOI

Taljaard D.S., Olaithe M., Brennan-Jones C.G., Eikelboom R.H., Bucks R.S. The relationship between hearing impairment and cognitive function: A meta-analysis in adults. Clin. Otolaryngol. 2016;41:718–729. doi: 10.1111/coa.12607. PubMed DOI

Panza F., Lozupone M., Sardone R., Battista P., Piccininni M., Dibello V., La Montagna M., Stallone R., Venezia P., Liguori A., et al. Sensorial frailty: Age-related hearing loss and the risk of cognitive impairment and dementia in later life. Ther. Adv. Chronic Dis. 2019;10:2040622318811000. doi: 10.1177/2040622318811000. PubMed DOI PMC

Johnson J.C.S., Marshall C.R., Weil R.S., Bamiou D.-E., Hardy C.J.D., Warren J.D. Hearing and dementia: From ears to brain. Brain. 2021;144:391–401. doi: 10.1093/brain/awaa429. PubMed DOI PMC

Griffiths T.D., Lad M., Kumar S., Holmes E., McMurray B., Maguire E.A., Billig A.J., Sedley W. How can hearing loss cause dementia? Neuron. 2020;108:401–412. doi: 10.1016/j.neuron.2020.08.003. PubMed DOI PMC

Belkhiria C., Vergara R.C., Martinez M., Delano P.H., Delgado C. Neural links between facial emotion recognition and cognitive impairment in presbycusis. Int. J. Geriatr. Psychiatry. 2021;36:1171–1178. doi: 10.1002/gps.5501. PubMed DOI

Delano P.H., Belkhiria C., Vergara R.C., Martínez M., Leiva A., Andrade M., Marcenaro B., Torrente M., Maass J.C., Delgado C. Reduced suprathreshold auditory nerve responses are associated with slower processing speed and thinner temporal and parietal cortex in presbycusis. PLoS ONE. 2020;15:e0233224. doi: 10.1371/journal.pone.0233224. PubMed DOI PMC

Belkhiria C., Vergara R.C., San Martin S., Leiva A., Martinez M., Marcenaro B., Andrade M., Delano P.H., Delgado C. Insula and Amygdala Atrophy Are Associated with Functional Impairment in Subjects with Presbycusis. Front. Aging Neurosci. 2020;12:102. doi: 10.3389/fnagi.2020.00102. PubMed DOI PMC

Park S.Y., Kim M.J., Sikandaner H., Kim D.K., Yeo S.W., Park S.N. A causal relationship between hearing loss and cognitive impairment. Acta Oto-Laryngol. 2016;136:480–483. doi: 10.3109/00016489.2015.1130857. PubMed DOI

Liu L.J., Shen P., He T.T., Chang Y., Shi L.J., Tao S., Li X.W., Xun Q.Y., Guo X.J., Yu Z.P., et al. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci. Rep. 2016;6:20374. doi: 10.1038/srep20374. PubMed DOI PMC

Park S.Y., Kim M.J., Kim H.L., Kim D.K., Yeo S.W., Park S.N. Cognitive decline and increased hippocampal p-tau expression in mice with hearing loss. Behav. Brain Res. 2018;342:19–26. doi: 10.1016/j.bbr.2018.01.003. PubMed DOI

Paciello F., Rinaudo M., Longo V., Cocco S., Conforto G., Pisani A., Podda M.V., Fetoni A.R., Paludetti G., Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer’s disease. eLife. 2021;10:e70908. doi: 10.7554/eLife.70908. PubMed DOI PMC

Yu Y.F., Zhai F., Dai C.F., Hu J.J. The relationship between age-related hearing loss and synaptic changes in the hippocampus of C57BL/6J mice. Exp. Gerontol. 2011;46:716–722. doi: 10.1016/j.exger.2011.04.007. PubMed DOI

Liberman M.C., Liberman L.D., Maison S.F. Efferent feedback slows cochlear aging. J. Neurosci. 2014;34:4599–4607. doi: 10.1523/JNEUROSCI.4923-13.2014. PubMed DOI PMC

Boero L.E., Castagna V.C., Terreros G., Moglie M.J., Silva S., Maass J.C., Fuchs P.A., Delano P.H., Elgoyhen A.B., Gómez-Casati M.E. Preventing presbycusis in mice with enhanced medial olivocochlear feedback. Proc. Natl. Acad. Sci. USA. 2020;117:11811–11819. doi: 10.1073/pnas.2000760117. PubMed DOI PMC

Vicencio-Jimenez S., Weinberg M.M., Bucci-Mansilla G., Lauer A.M. Olivocochlear Changes Associated with Aging Predominantly Affect the Medial Olivocochlear System. Front. Neurosci. 2021;15:704805. doi: 10.3389/fnins.2021.704805. PubMed DOI PMC

Terreros G., Jorratt P., Aedo C., Elgoyhen A.B., Delano P.H. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice. J. Neurosci. 2016;36:7198–7209. doi: 10.1523/JNEUROSCI.4031-15.2016. PubMed DOI PMC

Terreros G., Delano P.H. Corticofugal modulation of peripheral auditory responses. Front. Syst. Neurosci. 2015;9:134. doi: 10.3389/fnsys.2015.00134. PubMed DOI PMC

Katz E., Elgoyhen A.B. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses. Front. Syst. Neurosci. 2014;8:224. doi: 10.3389/fnsys.2014.00224. PubMed DOI PMC

Hiel H., Elgoyhen A.B., Drescher D.G., Morley B.J. Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system. Brain Res. 1996;738:347–352. doi: 10.1016/S0006-8993(96)01046-3. PubMed DOI

Alvarez-Munoz H., Vicencio-Jimenez S., Jorratt P., Delano P.H., Terreros G. Corticofugal and Brainstem Functions Associated With Medial Olivocochlear Cholinergic Transmission. Front. Neurosci. 2022;16:866161. doi: 10.3389/fnins.2022.866161. PubMed DOI PMC

Jorratt P., Delano P.H., Delgado C., Dagnino-Subiabre A., Terreros G. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice. Front. Cell. Neurosci. 2017;11:357. doi: 10.3389/fncel.2017.00357. PubMed DOI PMC

Sunyer B., Patil S., Höger H., Lubec G. Barnes maze, a useful task to assess spatial reference memory in the mice. Protoc. Exch. 2007 doi: 10.1038/nprot.2007.390. DOI

Schuetze S., Manig A., Ribes S., Nau R. Aged mice show an increased mortality after anesthesia with a standard dose of ketamine/xylazine. Lab. Anim. Res. 2019;35:8. doi: 10.1186/s42826-019-0008-y. PubMed DOI PMC

Rosenfeld C.S., Ferguson S.A. Barnes Maze Testing Strategies with Small and Large Rodent Models. Jove J. Vis. Exp. 2014;84:e51194. PubMed PMC

Harrison F.E., Reiserer R.S., Tomarken A.J., McDonald M.P. Spatial and nonspatial escape strategies in the Barnes maze. Learn. Mem. 2006;13:809–819. doi: 10.1101/lm.334306. PubMed DOI PMC

Gawel K., Gibula E., Marszalek-Grabska M., Filarowska J., Kotlinska J.H. Assessment of spatial learning and memory in the Barnes maze task in rodentsmethodological consideration. Naunyn-Schmiedebergs Arch. Pharmacol. 2019;392:1–18. doi: 10.1007/s00210-018-1589-y. PubMed DOI PMC

Grailhe R., Waeber C., Dulawa S.C., Hornung J.P., Zhuang X.X., Brunner D., Geyer M.A., Hen R. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT5A receptor. Neuron. 1999;22:581–591. doi: 10.1016/S0896-6273(00)80712-6. PubMed DOI

Mohammadi S.A., Burton T.J., Christie M.J. alpha 9-nAChR knockout mice exhibit dysregulation of stress responses, affect and reward-related behaviour. Behav. Brain Res. 2017;328:105–114. doi: 10.1016/j.bbr.2017.04.005. PubMed DOI

Harrison F.E., Hosseini A.H., McDonald M.P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav. Brain Res. 2009;198:247–251. doi: 10.1016/j.bbr.2008.10.015. PubMed DOI PMC

Taranda J., Maison S.F., Ballestero J.A., Katz E., Savino J., Vetter D.E., Boulter J., Liberman M.C., Fuchs P.A., Elgoyhen A.B. A Point Mutation in the Hair Cell Nicotinic Cholinergic Receptor Prolongs Cochlear Inhibition and Enhances Noise Protection. PLoS Biol. 2009;7:71–83. doi: 10.1371/journal.pbio.1000018. PubMed DOI PMC

Maison S.F., Liberman M.C. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 2000;20:4701–4707. doi: 10.1523/JNEUROSCI.20-12-04701.2000. PubMed DOI PMC

Boero L.E., Castagna V.C., Di Guilmi M.N., Goutman J.D., Elgoyhen A.B., Gomez-Casati M.E. Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss. J. Neurosci. 2018;38:7440–7451. doi: 10.1523/JNEUROSCI.0363-18.2018. PubMed DOI PMC

Lauer A.M. Minimal Effects of Age and Exposure to a Noisy Environment on Hearing in Alpha9 Nicotinic Receptor Knockout Mice. Front. Neurosci. 2017;11:304. doi: 10.3389/fnins.2017.00304. PubMed DOI PMC

Schaette R., McAlpine D. Tinnitus with a Normal Audiogram: Physiological Evidence for Hidden Hearing Loss and Computational Model. J. Neurosci. 2011;31:13452–13457. doi: 10.1523/JNEUROSCI.2156-11.2011. PubMed DOI PMC

Lips K.S., Pfeil U., Kummer W. Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience. 2002;115:1–5. doi: 10.1016/S0306-4522(02)00274-9. PubMed DOI

Elgoyhen A.B., Johnson D.S., Boulter J., Vetter D.E., Heinemann S. Alpha-9—An Acetylcholine-Receptor with Novel Pharmacological Properties Expressed in Rat Cochlear Hair-Cells. Cell. 1994;79:705–715. doi: 10.1016/0092-8674(94)90555-X. PubMed DOI

Colomer C., Olivos-Ore L.A., Vincent A., McIntosh J.M., Artalejo A.R., Guerineau N.C. Functional Characterization of alpha 9-Containing Cholinergic Nicotinic Receptors in the Rat Adrenal Medulla: Implication in Stress-Induced Functional Plasticity. J. Neurosci. 2010;30:6732–6742. doi: 10.1523/JNEUROSCI.4997-09.2010. PubMed DOI PMC

Peng H.S., Ferris R.L., Matthews T., Hiel H., Lopez-Albaitero A., Lustig L.R. Characterization of the human nicotinic acetylcholine receptor subunit alpha (alpha) 9 (CHRNA9) and alpha (alpha) 10 (CHRNAIO) in lymphocytes. Life Sci. 2004;76:263–280. doi: 10.1016/j.lfs.2004.05.031. PubMed DOI

Lykhmus O., Voytenko L.P., Lips K.S., Bergen I., Krasteva-Christ G., Vetter D.E., Kummer W., Skok M. Nicotinic Acetylcholine Receptor alpha 9 and alpha 10 Subunits Are Expressed in the Brain of Mice. Front. Cell Neurosci. 2017;11:282. doi: 10.3389/fncel.2017.00282. PubMed DOI PMC

Morley B.J., Whiteaker P., Elgoyhen A.B. Commentary: Nicotinic Acetylcholine Receptor alpha 9 and alpha 10 Subunits Are Expressed in the Brain of Mice. Front. Cell Neurosci. 2018;12:104. doi: 10.3389/fncel.2018.00104. PubMed DOI PMC

Sergeyenko Y., Lall K., Liberman M.C., Kujawa S.G. Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. J. Neurosci. 2013;33:13686–13694. doi: 10.1523/JNEUROSCI.1783-13.2013. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...