Maintained Spatial Learning and Memory Functions in Middle-Aged α9 Nicotinic Receptor Subunit Knock-Out Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1220607
Proyecto Fondecyt
FB0008
Proyecto Basal ANID
ICN09_015
Proyecto Milenio
Fundación Guillermo Puelma
PubMed
37239266
PubMed Central
PMC10216580
DOI
10.3390/brainsci13050794
PII: brainsci13050794
Knihovny.cz E-zdroje
- Klíčová slova
- auditory efferent, cognitive impairment, nicotinic receptor, novel object exploration, spatial learning,
- Publikační typ
- časopisecké články MeSH
Age-related hearing loss is linked to cognitive impairment, but the mechanisms that relate to these conditions remain unclear. Evidence shows that the activation of medial olivocochlear (MOC) neurons delays cochlear aging and hearing loss. Consequently, the loss of MOC function may be related to cognitive impairment. The α9/α10 nicotinic receptor is the main target of cholinergic synapses between the MOC neurons and cochlear outer hair cells. Here, we explored spatial learning and memory performance in middle-aged wild-type (WT) and α9-nAChR subunit knock-out (KO) mice using the Barnes maze and measured auditory brainstem response (ABR) thresholds and the number of cochlear hair cells as a proxy of cochlear aging. Our results show non-significant spatial learning differences between WT and KO mice, but KO mice had a trend of increased latency to enter the escape box and freezing time. To test a possible reactivity to the escape box, we evaluated the novelty-induced behavior using an open field and found a tendency towards more freezing time in KO mice. There were no differences in memory, ABR threshold, or the number of cochlear hair cells. We suggest that the lack of α9-nAChR subunit alters novelty-induced behavior, but not spatial learning in middle-aged mice, by a non-cochlear mechanism.
3rd Faculty of Medicine Charles University Ruská 87 100 00 Prague Czech Republic
Biomedical Neuroscience Institute Facultad de Medicina Universidad de Chile Santiago 8320328 Chile
Departamento de Neurociencia Facultad de Medicina Universidad de Chile Santiago 8320328 Chile
Department of Otolaryngology Hospital Clínico Universidad de Chile Santiago 8320328 Chile
Instituto de Ciencias de la Salud Universidad de O'Higgins Rancagua 2841935 Chile
National Institute of Mental Health Topolová 748 250 67 Klecany Czech Republic
Otolaryngology Department School of Medicine Johns Hopkins University Baltimore MD 21231 USA
Zobrazit více v PubMed
Alzheimer’s Association 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2022;18:700–789. doi: 10.1002/alz.12638. PubMed DOI
Valentijn S.A.M., van Boxtel M.P.J., van Hooren S.A.H., Bosma H., Beckers H.J.M., Ponds R.W.H.M., Jolles J. Change in sensory functioning predicts change in cognitive functioning: Results from a 6-year follow-up in the Maastricht Aging Study. J. Am. Geriatr. Soc. 2005;53:374–380. doi: 10.1111/j.1532-5415.2005.53152.x. PubMed DOI
Lin F.R., Yaffe K., Xia J., Xue Q.L., Harris T.B., Purchase-Helzner E., Satterfield S., Ayonayon H.N., Ferrucci L., Simonsick E.M., et al. Hearing Loss and Cognitive Decline in Older Adults. Jama Intern. Med. 2013;173:293–299. doi: 10.1001/jamainternmed.2013.1868. PubMed DOI PMC
Lin F.R. Hearing Loss and Cognition Among Older Adults in the United States. J. Gerontol. A Biol. 2011;66:1131–1136. doi: 10.1093/gerona/glr115. PubMed DOI PMC
Uhlmann R.F., Larson E.B., Rees T.S., Koepsell T.D., Duckert L.G. Relationship of Hearing Impairment to Dementia and Cognitive Dysfunction in Older Adults. JAMA J. Am. Med. Assoc. 1989;261:1916–1919. doi: 10.1001/jama.1989.03420130084028. PubMed DOI
Livingston G., Sommerlad A., Orgeta V., Costafreda S.G., Huntley J., Ames D., Ballard C., Banerjee S., Burns A., Cohen-Mansfield J., et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734. doi: 10.1016/S0140-6736(17)31363-6. PubMed DOI
Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., Brayne J., Burns A., Cohen-Mansfield J., Cooper C., et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. doi: 10.1016/S0140-6736(20)30367-6. PubMed DOI PMC
Panza F., Solfrizzi V., Seripa D., Imbimbo B.P., Capozzo R., Quaranta N., Pilotto A., Logroscino G. Age-related hearing impairment and frailty in Alzheimer’s disease: Interconnected associations and mechanisms. Front. Aging Neurosci. 2015;7:113. doi: 10.3389/fnagi.2015.00113. PubMed DOI PMC
Huang A.R., Jiang K., Lin F.R., Deal J.A., Reed N.S. Hearing Loss and Dementia Prevalence in Older Adults in the US. JAMA. 2023;329:171–173. doi: 10.1001/jama.2022.20954. PubMed DOI PMC
Gates G.A., Mills J.H. Presbycusis. Lancet. 2005;366:1111–1120. doi: 10.1016/S0140-6736(05)67423-5. PubMed DOI
Taljaard D.S., Olaithe M., Brennan-Jones C.G., Eikelboom R.H., Bucks R.S. The relationship between hearing impairment and cognitive function: A meta-analysis in adults. Clin. Otolaryngol. 2016;41:718–729. doi: 10.1111/coa.12607. PubMed DOI
Panza F., Lozupone M., Sardone R., Battista P., Piccininni M., Dibello V., La Montagna M., Stallone R., Venezia P., Liguori A., et al. Sensorial frailty: Age-related hearing loss and the risk of cognitive impairment and dementia in later life. Ther. Adv. Chronic Dis. 2019;10:2040622318811000. doi: 10.1177/2040622318811000. PubMed DOI PMC
Johnson J.C.S., Marshall C.R., Weil R.S., Bamiou D.-E., Hardy C.J.D., Warren J.D. Hearing and dementia: From ears to brain. Brain. 2021;144:391–401. doi: 10.1093/brain/awaa429. PubMed DOI PMC
Griffiths T.D., Lad M., Kumar S., Holmes E., McMurray B., Maguire E.A., Billig A.J., Sedley W. How can hearing loss cause dementia? Neuron. 2020;108:401–412. doi: 10.1016/j.neuron.2020.08.003. PubMed DOI PMC
Belkhiria C., Vergara R.C., Martinez M., Delano P.H., Delgado C. Neural links between facial emotion recognition and cognitive impairment in presbycusis. Int. J. Geriatr. Psychiatry. 2021;36:1171–1178. doi: 10.1002/gps.5501. PubMed DOI
Delano P.H., Belkhiria C., Vergara R.C., Martínez M., Leiva A., Andrade M., Marcenaro B., Torrente M., Maass J.C., Delgado C. Reduced suprathreshold auditory nerve responses are associated with slower processing speed and thinner temporal and parietal cortex in presbycusis. PLoS ONE. 2020;15:e0233224. doi: 10.1371/journal.pone.0233224. PubMed DOI PMC
Belkhiria C., Vergara R.C., San Martin S., Leiva A., Martinez M., Marcenaro B., Andrade M., Delano P.H., Delgado C. Insula and Amygdala Atrophy Are Associated with Functional Impairment in Subjects with Presbycusis. Front. Aging Neurosci. 2020;12:102. doi: 10.3389/fnagi.2020.00102. PubMed DOI PMC
Park S.Y., Kim M.J., Sikandaner H., Kim D.K., Yeo S.W., Park S.N. A causal relationship between hearing loss and cognitive impairment. Acta Oto-Laryngol. 2016;136:480–483. doi: 10.3109/00016489.2015.1130857. PubMed DOI
Liu L.J., Shen P., He T.T., Chang Y., Shi L.J., Tao S., Li X.W., Xun Q.Y., Guo X.J., Yu Z.P., et al. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci. Rep. 2016;6:20374. doi: 10.1038/srep20374. PubMed DOI PMC
Park S.Y., Kim M.J., Kim H.L., Kim D.K., Yeo S.W., Park S.N. Cognitive decline and increased hippocampal p-tau expression in mice with hearing loss. Behav. Brain Res. 2018;342:19–26. doi: 10.1016/j.bbr.2018.01.003. PubMed DOI
Paciello F., Rinaudo M., Longo V., Cocco S., Conforto G., Pisani A., Podda M.V., Fetoni A.R., Paludetti G., Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer’s disease. eLife. 2021;10:e70908. doi: 10.7554/eLife.70908. PubMed DOI PMC
Yu Y.F., Zhai F., Dai C.F., Hu J.J. The relationship between age-related hearing loss and synaptic changes in the hippocampus of C57BL/6J mice. Exp. Gerontol. 2011;46:716–722. doi: 10.1016/j.exger.2011.04.007. PubMed DOI
Liberman M.C., Liberman L.D., Maison S.F. Efferent feedback slows cochlear aging. J. Neurosci. 2014;34:4599–4607. doi: 10.1523/JNEUROSCI.4923-13.2014. PubMed DOI PMC
Boero L.E., Castagna V.C., Terreros G., Moglie M.J., Silva S., Maass J.C., Fuchs P.A., Delano P.H., Elgoyhen A.B., Gómez-Casati M.E. Preventing presbycusis in mice with enhanced medial olivocochlear feedback. Proc. Natl. Acad. Sci. USA. 2020;117:11811–11819. doi: 10.1073/pnas.2000760117. PubMed DOI PMC
Vicencio-Jimenez S., Weinberg M.M., Bucci-Mansilla G., Lauer A.M. Olivocochlear Changes Associated with Aging Predominantly Affect the Medial Olivocochlear System. Front. Neurosci. 2021;15:704805. doi: 10.3389/fnins.2021.704805. PubMed DOI PMC
Terreros G., Jorratt P., Aedo C., Elgoyhen A.B., Delano P.H. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice. J. Neurosci. 2016;36:7198–7209. doi: 10.1523/JNEUROSCI.4031-15.2016. PubMed DOI PMC
Terreros G., Delano P.H. Corticofugal modulation of peripheral auditory responses. Front. Syst. Neurosci. 2015;9:134. doi: 10.3389/fnsys.2015.00134. PubMed DOI PMC
Katz E., Elgoyhen A.B. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses. Front. Syst. Neurosci. 2014;8:224. doi: 10.3389/fnsys.2014.00224. PubMed DOI PMC
Hiel H., Elgoyhen A.B., Drescher D.G., Morley B.J. Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system. Brain Res. 1996;738:347–352. doi: 10.1016/S0006-8993(96)01046-3. PubMed DOI
Alvarez-Munoz H., Vicencio-Jimenez S., Jorratt P., Delano P.H., Terreros G. Corticofugal and Brainstem Functions Associated With Medial Olivocochlear Cholinergic Transmission. Front. Neurosci. 2022;16:866161. doi: 10.3389/fnins.2022.866161. PubMed DOI PMC
Jorratt P., Delano P.H., Delgado C., Dagnino-Subiabre A., Terreros G. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice. Front. Cell. Neurosci. 2017;11:357. doi: 10.3389/fncel.2017.00357. PubMed DOI PMC
Sunyer B., Patil S., Höger H., Lubec G. Barnes maze, a useful task to assess spatial reference memory in the mice. Protoc. Exch. 2007 doi: 10.1038/nprot.2007.390. DOI
Schuetze S., Manig A., Ribes S., Nau R. Aged mice show an increased mortality after anesthesia with a standard dose of ketamine/xylazine. Lab. Anim. Res. 2019;35:8. doi: 10.1186/s42826-019-0008-y. PubMed DOI PMC
Rosenfeld C.S., Ferguson S.A. Barnes Maze Testing Strategies with Small and Large Rodent Models. Jove J. Vis. Exp. 2014;84:e51194. PubMed PMC
Harrison F.E., Reiserer R.S., Tomarken A.J., McDonald M.P. Spatial and nonspatial escape strategies in the Barnes maze. Learn. Mem. 2006;13:809–819. doi: 10.1101/lm.334306. PubMed DOI PMC
Gawel K., Gibula E., Marszalek-Grabska M., Filarowska J., Kotlinska J.H. Assessment of spatial learning and memory in the Barnes maze task in rodentsmethodological consideration. Naunyn-Schmiedebergs Arch. Pharmacol. 2019;392:1–18. doi: 10.1007/s00210-018-1589-y. PubMed DOI PMC
Grailhe R., Waeber C., Dulawa S.C., Hornung J.P., Zhuang X.X., Brunner D., Geyer M.A., Hen R. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT5A receptor. Neuron. 1999;22:581–591. doi: 10.1016/S0896-6273(00)80712-6. PubMed DOI
Mohammadi S.A., Burton T.J., Christie M.J. alpha 9-nAChR knockout mice exhibit dysregulation of stress responses, affect and reward-related behaviour. Behav. Brain Res. 2017;328:105–114. doi: 10.1016/j.bbr.2017.04.005. PubMed DOI
Harrison F.E., Hosseini A.H., McDonald M.P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav. Brain Res. 2009;198:247–251. doi: 10.1016/j.bbr.2008.10.015. PubMed DOI PMC
Taranda J., Maison S.F., Ballestero J.A., Katz E., Savino J., Vetter D.E., Boulter J., Liberman M.C., Fuchs P.A., Elgoyhen A.B. A Point Mutation in the Hair Cell Nicotinic Cholinergic Receptor Prolongs Cochlear Inhibition and Enhances Noise Protection. PLoS Biol. 2009;7:71–83. doi: 10.1371/journal.pbio.1000018. PubMed DOI PMC
Maison S.F., Liberman M.C. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 2000;20:4701–4707. doi: 10.1523/JNEUROSCI.20-12-04701.2000. PubMed DOI PMC
Boero L.E., Castagna V.C., Di Guilmi M.N., Goutman J.D., Elgoyhen A.B., Gomez-Casati M.E. Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss. J. Neurosci. 2018;38:7440–7451. doi: 10.1523/JNEUROSCI.0363-18.2018. PubMed DOI PMC
Lauer A.M. Minimal Effects of Age and Exposure to a Noisy Environment on Hearing in Alpha9 Nicotinic Receptor Knockout Mice. Front. Neurosci. 2017;11:304. doi: 10.3389/fnins.2017.00304. PubMed DOI PMC
Schaette R., McAlpine D. Tinnitus with a Normal Audiogram: Physiological Evidence for Hidden Hearing Loss and Computational Model. J. Neurosci. 2011;31:13452–13457. doi: 10.1523/JNEUROSCI.2156-11.2011. PubMed DOI PMC
Lips K.S., Pfeil U., Kummer W. Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience. 2002;115:1–5. doi: 10.1016/S0306-4522(02)00274-9. PubMed DOI
Elgoyhen A.B., Johnson D.S., Boulter J., Vetter D.E., Heinemann S. Alpha-9—An Acetylcholine-Receptor with Novel Pharmacological Properties Expressed in Rat Cochlear Hair-Cells. Cell. 1994;79:705–715. doi: 10.1016/0092-8674(94)90555-X. PubMed DOI
Colomer C., Olivos-Ore L.A., Vincent A., McIntosh J.M., Artalejo A.R., Guerineau N.C. Functional Characterization of alpha 9-Containing Cholinergic Nicotinic Receptors in the Rat Adrenal Medulla: Implication in Stress-Induced Functional Plasticity. J. Neurosci. 2010;30:6732–6742. doi: 10.1523/JNEUROSCI.4997-09.2010. PubMed DOI PMC
Peng H.S., Ferris R.L., Matthews T., Hiel H., Lopez-Albaitero A., Lustig L.R. Characterization of the human nicotinic acetylcholine receptor subunit alpha (alpha) 9 (CHRNA9) and alpha (alpha) 10 (CHRNAIO) in lymphocytes. Life Sci. 2004;76:263–280. doi: 10.1016/j.lfs.2004.05.031. PubMed DOI
Lykhmus O., Voytenko L.P., Lips K.S., Bergen I., Krasteva-Christ G., Vetter D.E., Kummer W., Skok M. Nicotinic Acetylcholine Receptor alpha 9 and alpha 10 Subunits Are Expressed in the Brain of Mice. Front. Cell Neurosci. 2017;11:282. doi: 10.3389/fncel.2017.00282. PubMed DOI PMC
Morley B.J., Whiteaker P., Elgoyhen A.B. Commentary: Nicotinic Acetylcholine Receptor alpha 9 and alpha 10 Subunits Are Expressed in the Brain of Mice. Front. Cell Neurosci. 2018;12:104. doi: 10.3389/fncel.2018.00104. PubMed DOI PMC
Sergeyenko Y., Lall K., Liberman M.C., Kujawa S.G. Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. J. Neurosci. 2013;33:13686–13694. doi: 10.1523/JNEUROSCI.1783-13.2013. PubMed DOI PMC