Mechanical Properties of High Carbon Low-Density Steels

. 2023 May 19 ; 16 (10) : . [epub] 20230519

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37241479

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000836 Ministry of Education, Youth and Sports

The paper presents the possibilities of heat treatment of low-density structural steels usable for springs. Heats have been prepared with chemical compositions 0.7 wt% C and 1 wt% C, as well as 7 wt% Al and 5 wt% Al. Samples were prepared from ingots weighing approximately 50 kg. These ingots were homogenised, then forged, and hot rolled. Primary transformation temperatures and specific gravity values were determined for these alloys. For low-density steels, there usually needs to be a solution to achieve the required ductility values. At cooling rates of 50 °C/s and 100 °C/s, the kappa phase is not present. A SEM analysed the fracture surfaces for the presence of transit carbides during tempering. The martensite start temperatures ranged from 55-131 °C, depending on the chemical composition. The densities of the measured alloys were 7.08 g/cm3 and 7.18 g/cm3, respectively. Therefore, heat treatment variation was carried out to achieve a tensile strength of over 2500 MPa, with ductility of almost 4%. Hardnesses above 60 HRC were achieved for 1 wt% C heats using the appropriate heat treatment.

Zobrazit více v PubMed

Gutierrez-Urrutia I. Low Density Fe-Mn-Al-C Steels: Phase Structures, Mechanisms and Properties. ISIJ Int. 2021;61:16–25. doi: 10.2355/isijinternational.ISIJINT-2020-467. DOI

Suh D.W., Kim N.J. Low-Density Steels. Scr. Mater. 2013;68:337–338. doi: 10.1016/j.scriptamat.2012.11.037. DOI

Kaltzakorta I., Gutierrez T., Elvira R., Jimbert P., Guraya T. Evolution of Microstructure during Isothermal Treatments of a Duplex-Austenitic 0.66C11.4Mn.9.9Al Low-Density Forging Steel and Effect on the Mechanical Properties. Metals. 2021;11:214. doi: 10.3390/met11020214. DOI

Frommeyer G., Brüx U. Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels. Steel Res. Int. 2006;77:627–633. doi: 10.1002/srin.200606440. DOI

Mallick P.K. Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing; Cambridge, UK: 2010. Overview; pp. 1–32. DOI

Pramanik S., Suwas S. Low-Density Steels: The Effect of Al Addition on Microstructure and Properties. Jom. 2014;66:1868–1876. doi: 10.1007/s11837-014-1129-2. DOI

Chen S., Rana R. High-Performance Ferrous Alloys. Springer; Berlin/Heidelberg, Germany: 2021. DOI

Stein F., Vogel S.C., Eumann M., Palm M. Determination of the Crystal Structure of the ε Phase in the Fe-Al System by High-Temperature Neutron Diffraction. Intermetallics. 2010;18:150–156. doi: 10.1016/j.intermet.2009.07.006. DOI

Kim S.H., Kim H., Kim N.J. Brittle Intermetallic Compound Makes Ultrastrong Low-Density Steel with Large Ductility. Nature. 2015;518:77–79. doi: 10.1038/nature14144. PubMed DOI

Chang K.M., Chao C.G., Liu T.F. Excellent Combination of Strength and Ductility in an Fe-9Al-28Mn-1.8C Alloy. Scr. Mater. 2010;63:162–165. doi: 10.1016/j.scriptamat.2010.03.038. DOI

Wang W., Zhu H., Han Y., Li J., Xue Z. Effect of Al Content on Non-Metallic Inclusions in Fe–23Mn–XAl–0.7C Lightweight Steels. Ironmak. Steelmak. 2021;48:1038–1047. doi: 10.1080/03019233.2021.1909993. DOI

Lee H.J., Sohn S.S., Lee S., Kwak J.H., Lee B.J. Thermodynamic Analysis of the Effect of C, Mn and Al on Microstructural Evolution of Lightweight Steels. Scr. Mater. 2013;68:339–342. doi: 10.1016/j.scriptamat.2012.10.032. DOI

Votava F., Jirková H., Kučerová L., Jeníček Š. Study of Transition Areas in Press-Hardened Steels in a Combined Tool for Hot and Cold Forming. Materials. 2023;16:442. doi: 10.3390/ma16010442. PubMed DOI PMC

Zambrano O.A. A General Perspective of Fe–Mn–Al–C Steels. J. Mater. Sci. 2018;53:14003–14062. doi: 10.1007/s10853-018-2551-6. DOI

Hájek J., Nový Z., Kučerová L., Jirková H., Salvetr P., Motyčka P., Hajšman J., Bystřická T. A New Alloying Concept for Low-Density Steels. Materials. 2022;15:2539. doi: 10.3390/ma15072539. PubMed DOI PMC

Springer H., Zhang J.L., Szczepaniak A., Belde M., Gault B., Raabe D. Light, Strong and Cost Effective: Martensitic Steels Based on the Fe–Al–C System. Mater. Sci. Eng. A. 2019;762:138088. doi: 10.1016/j.msea.2019.138088. DOI

Yi H.L., Cai H.L., Hou Z.Y., Pang J.C., Wu D., Wang G.D. Low Density Steel 1.2C-1.5Cr-5Al Designed for Bearings. Mater. Sci. Technol. 2014;30:1045–1049. doi: 10.1179/1743284714Y.0000000513. DOI

JMatPro . Materials Property Simulation Package Public Release. Sente Software Ltd.; Guildford, UK: 2019.

Ashby M.F. Materials Selection in Mechanical Design. 2nd ed. Volume 3. Elsevier; Amsterdam, The Netherlands: 1992. p. 665.

Becker P. Low Density Steels for Light Springs. Wuppertal, Germany: 2019.

Kovové materiály—Zkoušení tahem—Část 1:Zkušební metoda za pokojové teploty. Vol. 76. Úřad pro technickou normalizaci, metrologii astátní zkušebnictví; Praha, Czech Republic: 2021. pp. 1–76. Třídicí znak 42 0310.

Radhakanta R., Lahaye C., Ranjit R.K. Overview of Lightweight Ferrous Materials: Straegies and Promises. J. Mater. 2014;66:1734–1746. doi: 10.1007/s11837-014-1126-5. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...