Mechanical Properties of High Carbon Low-Density Steels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000836
Ministry of Education, Youth and Sports
PubMed
37241479
PubMed Central
PMC10222114
DOI
10.3390/ma16103852
PII: ma16103852
Knihovny.cz E-zdroje
- Klíčová slova
- heat treatment, low density steels, tensile test,
- Publikační typ
- časopisecké články MeSH
The paper presents the possibilities of heat treatment of low-density structural steels usable for springs. Heats have been prepared with chemical compositions 0.7 wt% C and 1 wt% C, as well as 7 wt% Al and 5 wt% Al. Samples were prepared from ingots weighing approximately 50 kg. These ingots were homogenised, then forged, and hot rolled. Primary transformation temperatures and specific gravity values were determined for these alloys. For low-density steels, there usually needs to be a solution to achieve the required ductility values. At cooling rates of 50 °C/s and 100 °C/s, the kappa phase is not present. A SEM analysed the fracture surfaces for the presence of transit carbides during tempering. The martensite start temperatures ranged from 55-131 °C, depending on the chemical composition. The densities of the measured alloys were 7.08 g/cm3 and 7.18 g/cm3, respectively. Therefore, heat treatment variation was carried out to achieve a tensile strength of over 2500 MPa, with ductility of almost 4%. Hardnesses above 60 HRC were achieved for 1 wt% C heats using the appropriate heat treatment.
COMTES FHT a s 334 41 Dobrany Czech Republic
Institute of Metals and Technology 1000 Ljubljana Slovenia
New Technologies Research Centre University of West Bohemia 301 00 Plzen Czech Republic
Regional Technological Institute University of West Bohemia 301 00 Plzen Czech Republic
Zobrazit více v PubMed
Gutierrez-Urrutia I. Low Density Fe-Mn-Al-C Steels: Phase Structures, Mechanisms and Properties. ISIJ Int. 2021;61:16–25. doi: 10.2355/isijinternational.ISIJINT-2020-467. DOI
Suh D.W., Kim N.J. Low-Density Steels. Scr. Mater. 2013;68:337–338. doi: 10.1016/j.scriptamat.2012.11.037. DOI
Kaltzakorta I., Gutierrez T., Elvira R., Jimbert P., Guraya T. Evolution of Microstructure during Isothermal Treatments of a Duplex-Austenitic 0.66C11.4Mn.9.9Al Low-Density Forging Steel and Effect on the Mechanical Properties. Metals. 2021;11:214. doi: 10.3390/met11020214. DOI
Frommeyer G., Brüx U. Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels. Steel Res. Int. 2006;77:627–633. doi: 10.1002/srin.200606440. DOI
Mallick P.K. Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing; Cambridge, UK: 2010. Overview; pp. 1–32. DOI
Pramanik S., Suwas S. Low-Density Steels: The Effect of Al Addition on Microstructure and Properties. Jom. 2014;66:1868–1876. doi: 10.1007/s11837-014-1129-2. DOI
Chen S., Rana R. High-Performance Ferrous Alloys. Springer; Berlin/Heidelberg, Germany: 2021. DOI
Stein F., Vogel S.C., Eumann M., Palm M. Determination of the Crystal Structure of the ε Phase in the Fe-Al System by High-Temperature Neutron Diffraction. Intermetallics. 2010;18:150–156. doi: 10.1016/j.intermet.2009.07.006. DOI
Kim S.H., Kim H., Kim N.J. Brittle Intermetallic Compound Makes Ultrastrong Low-Density Steel with Large Ductility. Nature. 2015;518:77–79. doi: 10.1038/nature14144. PubMed DOI
Chang K.M., Chao C.G., Liu T.F. Excellent Combination of Strength and Ductility in an Fe-9Al-28Mn-1.8C Alloy. Scr. Mater. 2010;63:162–165. doi: 10.1016/j.scriptamat.2010.03.038. DOI
Wang W., Zhu H., Han Y., Li J., Xue Z. Effect of Al Content on Non-Metallic Inclusions in Fe–23Mn–XAl–0.7C Lightweight Steels. Ironmak. Steelmak. 2021;48:1038–1047. doi: 10.1080/03019233.2021.1909993. DOI
Lee H.J., Sohn S.S., Lee S., Kwak J.H., Lee B.J. Thermodynamic Analysis of the Effect of C, Mn and Al on Microstructural Evolution of Lightweight Steels. Scr. Mater. 2013;68:339–342. doi: 10.1016/j.scriptamat.2012.10.032. DOI
Votava F., Jirková H., Kučerová L., Jeníček Š. Study of Transition Areas in Press-Hardened Steels in a Combined Tool for Hot and Cold Forming. Materials. 2023;16:442. doi: 10.3390/ma16010442. PubMed DOI PMC
Zambrano O.A. A General Perspective of Fe–Mn–Al–C Steels. J. Mater. Sci. 2018;53:14003–14062. doi: 10.1007/s10853-018-2551-6. DOI
Hájek J., Nový Z., Kučerová L., Jirková H., Salvetr P., Motyčka P., Hajšman J., Bystřická T. A New Alloying Concept for Low-Density Steels. Materials. 2022;15:2539. doi: 10.3390/ma15072539. PubMed DOI PMC
Springer H., Zhang J.L., Szczepaniak A., Belde M., Gault B., Raabe D. Light, Strong and Cost Effective: Martensitic Steels Based on the Fe–Al–C System. Mater. Sci. Eng. A. 2019;762:138088. doi: 10.1016/j.msea.2019.138088. DOI
Yi H.L., Cai H.L., Hou Z.Y., Pang J.C., Wu D., Wang G.D. Low Density Steel 1.2C-1.5Cr-5Al Designed for Bearings. Mater. Sci. Technol. 2014;30:1045–1049. doi: 10.1179/1743284714Y.0000000513. DOI
JMatPro . Materials Property Simulation Package Public Release. Sente Software Ltd.; Guildford, UK: 2019.
Ashby M.F. Materials Selection in Mechanical Design. 2nd ed. Volume 3. Elsevier; Amsterdam, The Netherlands: 1992. p. 665.
Becker P. Low Density Steels for Light Springs. Wuppertal, Germany: 2019.
Kovové materiály—Zkoušení tahem—Část 1:Zkušební metoda za pokojové teploty. Vol. 76. Úřad pro technickou normalizaci, metrologii astátní zkušebnictví; Praha, Czech Republic: 2021. pp. 1–76. Třídicí znak 42 0310.
Radhakanta R., Lahaye C., Ranjit R.K. Overview of Lightweight Ferrous Materials: Straegies and Promises. J. Mater. 2014;66:1734–1746. doi: 10.1007/s11837-014-1126-5. DOI