Study of Transition Areas in Press-Hardened Steels in a Combined Tool for Hot and Cold Forming
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2021-025
University of West Bohemia
PubMed
36614781
PubMed Central
PMC9821929
DOI
10.3390/ma16010442
PII: ma16010442
Knihovny.cz E-zdroje
- Klíčová slova
- high-strength steel, hot stamping, multiphase structure, press-hardening,
- Publikační typ
- časopisecké články MeSH
Press-hardening, also known as hot stamping, is a manufacturing process for producing car body parts that must meet the high demands of their mechanical properties and safety parameters. Moreover, these components often require different mechanical properties in different parts of the component. This work presents the press-hardening process in a special combined tool where one half of the tool is heated and the other half is cooled. The cooled part has been 3D printed due to the complexity of the internal cooling channels. The aim of this work is to investigate the variation of the microstructures in the sheet metal and the mechanical properties in relation to the cooling process in the tool and to determine the transition area where these properties cross over. Two steels were chosen for the experiment. The most commonly used steel 22MnB5, and an experimental high-strength steel with 0.2% C alloyed with manganese and aluminium. A temperature of 425 °C was set in the heated part of the tool, and different holding times in the tool were tested. In the heated part of the tool, a bainitic structure with a fraction of ferrite and retained austenite was formed, while in the quenched part of the tool, a martensitic transformation was promoted due to rapid cooling. In addition to microscopic analyses, mechanical tests and hardness measurements were also performed.
Zobrazit více v PubMed
Billur E. Hot Stamping of Ultra High-Strength Steels from a Technological and Business Perspective. 1st ed. Springer; Berlin/Heidelberg, Germany: 2019.
Saba N., Rishmany J., Tawk I., Daaboul M. Optimization of the production process of an A-pillar using a differential thickness profile approach via FEA. Athens J. Technol. Eng. 2017;4:109–123. doi: 10.30958/ajte.4-2-3. DOI
Karbasian H., Tekkaya A.E. A review on hot stamping. J. Mater. Process. Technol. 2010;210:2103–2118. doi: 10.1016/j.jmatprotec.2010.07.019. DOI
Danielczyk P., Wróbel I. Analysis of hot stamping tool cooling system—A case study. Materials. 2021;14:2759. doi: 10.3390/ma14112759. PubMed DOI PMC
Cischino E., Di Paolo F., Mangino E., Pullini D., Elizetxea C., Maestro C., Christiansen J.D. An advanced technological lightweighted solution for a body in white. Transp. Res. Procedia. 2016;14:1021–1030. doi: 10.1016/j.trpro.2016.05.082. DOI
Parareda S., Casellas D., Frómeta D., Martínez M., Lara A., Barrero A., Pujante J. Fatigue resistance of press hardened 22MnB5 steels. Int. J. Fatigue. 2020;130:105262. doi: 10.1016/j.ijfatigue.2019.105262. DOI
Merklein M., Wieland M., Lechner M., Bruschi S., Ghiotti A. Hot stamping of boron steel sheets with tailored properties: A review. J. Mater. Process. Technol. 2016;228:11–24. doi: 10.1016/j.jmatprotec.2015.09.023. DOI
Jirková H., Vrtáček J., Peković M., Janda T., Kučerová L. Influence of chromium and nobium on the press-hardening process of multiphase low-alloy TRIP steels. Mater. Sci. Forum. 2021;1016:636–641. doi: 10.4028/www.scientific.net/MSF.1016.636. DOI
Venturato G., Novella M., Bruschi S., Ghiotti A., Shivpuri R. Effects of phase transformation in hot stamping of 22MnB5 high strength steel. Procedia Eng. 2017;183:316–321. doi: 10.1016/j.proeng.2017.04.045. DOI
Ximenes D.A.D.C., Moreira L.P., de Carvalho J.E.R., Leite D.N.F., Toledo R.G., Dias F.M.D.S. Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions. J. Mater. Res. Technol. 2020;9:629–635. doi: 10.1016/j.jmrt.2019.11.003. DOI
Prajogo Y. Master’s Thesis. University of Waterloo; Ontario, Canada: 2015. Hot Stamping of a Boron Steel Side Impact Beam with Tailored Flange Properties.
Chen J. Comprehensive Materials Processing. Volume 5. Elsevier; Amsterdam, The Netherlands: 2014. Hot stamping; pp. 351–370.
Jirková H., Opatová K., Jenicek S., Vrtáček J., Kučerová L., Kurka P. Use of multi-phase TRIP steel for press-hardening technology. Acta Metall. Slovaca. 2019;25:101–106. doi: 10.12776/ams.v25i2.1267. DOI
Meza-García E., Rautenstrauch A., Leonhardt A., Kräusel V., Landgrebe D. Forming with thermomechanical treatment for manufacturing a side sill demonstrator of AA6082 aluminium sheet alloy. Hot Sheet Met. Form. High-Perform. Steel CHS2. 2017;6:1–8.
Hoffmann H., So H., Steinbeiss H. Design of hot stamping tools with cooling system. CIRP Ann. 2007;56:269–272. doi: 10.1016/j.cirp.2007.05.062. DOI
Schieck F., Hochmuth C., Polster S., Mosel A. Modern tool design for component grading incorporating simulation models, efficient tool cooling concepts and tool coating systems. CIRP J. Manuf. Sci. Technol. 2011;4:189–199. doi: 10.1016/j.cirpj.2011.06.001. DOI
Tang B., Li Q., Wang Q., Guo N., Meng X., Shi Y., Su H., Lin L. A novel micromechanical-based secant method to predict the elastoplastic constitutive relation of a tailor-tempered 22MnB5 sheet. Mater. Today Commun. 2022;31:103236. doi: 10.1016/j.mtcomm.2022.103236. DOI
Zhou J., Li Q., Wang Q., Guo N., Meng X., Shi Y., Su H., Lin L. Numerical simulation and experimental investigation of tailored hot stamping of boron steel by partial heating. J. Mater. Res. Technol. 2021;14:1347–1365. doi: 10.1016/j.jmrt.2021.07.025. DOI
Kučerová L., Burdová K., Jeníček Š., Chena I. Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel. Mater. Sci. Eng. A. 2021;814:141195. doi: 10.1016/j.msea.2021.141195. DOI
Lechler J., Merklein M. Hot stamping of ultra strength steels as a key technology for lightweight construction. Mater. Sci. Technol. 2008;3:1698–1709.
Min J., Lin J., Li J. Effect of deformation temperature on the microstructure of boron steel 22MnB5. J. Comput. Theor. Nanosci. 2011;4:938–942. doi: 10.1166/asl.2011.1374. DOI
Jirková H., Opatová K., Jeníček Š., Kučerová L. Press hardening on high-strength steels with higher ductility values. Hot Sheet Met. Form. High-Perform. Steel CHS2. 2022;8:377–384.
Opatová K., Jirková H., Holá M., Jeníček Š. Influence of forming temperature and partitioning on properties of steels for press-hardening. Hot Sheet Met. Form. High-Perform. Steel CHS2. 2022;8:43–50.
Kučerová L., Bystrianský M. Comparison of thermo-mechanical treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP steels. Procedia Eng. 2017;207:1856–1861. doi: 10.1016/j.proeng.2017.10.951. DOI
Hu J., Du L., Xu W., Zhai J., Dong Y., Liu Y., Misra R. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite. Mater. Charact. 2018;136:20–28. doi: 10.1016/j.matchar.2017.11.058. DOI
De Cooman B.C. Structure-properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci. 2004;8:285–303. doi: 10.1016/j.cossms.2004.10.002. DOI
Zhao X., Shen Y., Qiu L., Liu Y., Sun X., Zuo L. Effects of intercritical annealing temperature on mechanical properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C steel. Materials. 2014;7:7891–7906. doi: 10.3390/ma7127891. PubMed DOI PMC
Zhao L., Moreno J., Kruijver S., Sietsma J., van der Zwaag S. Influence of intercritical annealing temperature on phase transformations in a high aluminium TRIP steel. Int. Conf. TRIP-Aided High Strenght Ferr. Alloy. 2002:141–146.
Lee S., De Cooman B.C. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2013;44:5018–5024. doi: 10.1007/s11661-013-1860-2. DOI
Lee S., Lee S.J., Santhosh Kumar S., Lee K., De Cooman B.C. Localized deformation in multiphase, ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2011;42:3638–3651. doi: 10.1007/s11661-011-0636-9. DOI
Jirková H., Opatová K., Jeníček Š., Kučerová L. Combination of press-hardening and isothermal holding in the treatment of high-strength steels. IOP Conf. Ser. Mater. Sci. Eng. 2020;723:012012. doi: 10.1088/1757-899X/723/1/012012. DOI
Jacques P., Girault E., Catlin T., Geerlofs N., Kop T., van der Zwaag S., Delannay F. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: Influence of silicon content on cementite precipitation and austenite retention. Mater. Sci. Eng. A. 1999;273–275,:475–479. doi: 10.1016/S0921-5093(99)00331-7. DOI
Kučerová L., Burdová K., Stehlík A. Effect of soaking temperature on the microstructure and mechanical properties of heat-treated Al-Si-Nb TRIP steel. IOP Conf. Ser. Mater. Sci. Eng. 2020;723:012018. doi: 10.1088/1757-899X/723/1/012018. DOI
Mechanical Properties of High Carbon Low-Density Steels