Study of Transition Areas in Press-Hardened Steels in a Combined Tool for Hot and Cold Forming

. 2023 Jan 03 ; 16 (1) : . [epub] 20230103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36614781

Grantová podpora
SGS-2021-025 University of West Bohemia

Press-hardening, also known as hot stamping, is a manufacturing process for producing car body parts that must meet the high demands of their mechanical properties and safety parameters. Moreover, these components often require different mechanical properties in different parts of the component. This work presents the press-hardening process in a special combined tool where one half of the tool is heated and the other half is cooled. The cooled part has been 3D printed due to the complexity of the internal cooling channels. The aim of this work is to investigate the variation of the microstructures in the sheet metal and the mechanical properties in relation to the cooling process in the tool and to determine the transition area where these properties cross over. Two steels were chosen for the experiment. The most commonly used steel 22MnB5, and an experimental high-strength steel with 0.2% C alloyed with manganese and aluminium. A temperature of 425 °C was set in the heated part of the tool, and different holding times in the tool were tested. In the heated part of the tool, a bainitic structure with a fraction of ferrite and retained austenite was formed, while in the quenched part of the tool, a martensitic transformation was promoted due to rapid cooling. In addition to microscopic analyses, mechanical tests and hardness measurements were also performed.

Zobrazit více v PubMed

Billur E. Hot Stamping of Ultra High-Strength Steels from a Technological and Business Perspective. 1st ed. Springer; Berlin/Heidelberg, Germany: 2019.

Saba N., Rishmany J., Tawk I., Daaboul M. Optimization of the production process of an A-pillar using a differential thickness profile approach via FEA. Athens J. Technol. Eng. 2017;4:109–123. doi: 10.30958/ajte.4-2-3. DOI

Karbasian H., Tekkaya A.E. A review on hot stamping. J. Mater. Process. Technol. 2010;210:2103–2118. doi: 10.1016/j.jmatprotec.2010.07.019. DOI

Danielczyk P., Wróbel I. Analysis of hot stamping tool cooling system—A case study. Materials. 2021;14:2759. doi: 10.3390/ma14112759. PubMed DOI PMC

Cischino E., Di Paolo F., Mangino E., Pullini D., Elizetxea C., Maestro C., Christiansen J.D. An advanced technological lightweighted solution for a body in white. Transp. Res. Procedia. 2016;14:1021–1030. doi: 10.1016/j.trpro.2016.05.082. DOI

Parareda S., Casellas D., Frómeta D., Martínez M., Lara A., Barrero A., Pujante J. Fatigue resistance of press hardened 22MnB5 steels. Int. J. Fatigue. 2020;130:105262. doi: 10.1016/j.ijfatigue.2019.105262. DOI

Merklein M., Wieland M., Lechner M., Bruschi S., Ghiotti A. Hot stamping of boron steel sheets with tailored properties: A review. J. Mater. Process. Technol. 2016;228:11–24. doi: 10.1016/j.jmatprotec.2015.09.023. DOI

Jirková H., Vrtáček J., Peković M., Janda T., Kučerová L. Influence of chromium and nobium on the press-hardening process of multiphase low-alloy TRIP steels. Mater. Sci. Forum. 2021;1016:636–641. doi: 10.4028/www.scientific.net/MSF.1016.636. DOI

Venturato G., Novella M., Bruschi S., Ghiotti A., Shivpuri R. Effects of phase transformation in hot stamping of 22MnB5 high strength steel. Procedia Eng. 2017;183:316–321. doi: 10.1016/j.proeng.2017.04.045. DOI

Ximenes D.A.D.C., Moreira L.P., de Carvalho J.E.R., Leite D.N.F., Toledo R.G., Dias F.M.D.S. Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions. J. Mater. Res. Technol. 2020;9:629–635. doi: 10.1016/j.jmrt.2019.11.003. DOI

Prajogo Y. Master’s Thesis. University of Waterloo; Ontario, Canada: 2015. Hot Stamping of a Boron Steel Side Impact Beam with Tailored Flange Properties.

Chen J. Comprehensive Materials Processing. Volume 5. Elsevier; Amsterdam, The Netherlands: 2014. Hot stamping; pp. 351–370.

Jirková H., Opatová K., Jenicek S., Vrtáček J., Kučerová L., Kurka P. Use of multi-phase TRIP steel for press-hardening technology. Acta Metall. Slovaca. 2019;25:101–106. doi: 10.12776/ams.v25i2.1267. DOI

Meza-García E., Rautenstrauch A., Leonhardt A., Kräusel V., Landgrebe D. Forming with thermomechanical treatment for manufacturing a side sill demonstrator of AA6082 aluminium sheet alloy. Hot Sheet Met. Form. High-Perform. Steel CHS2. 2017;6:1–8.

Hoffmann H., So H., Steinbeiss H. Design of hot stamping tools with cooling system. CIRP Ann. 2007;56:269–272. doi: 10.1016/j.cirp.2007.05.062. DOI

Schieck F., Hochmuth C., Polster S., Mosel A. Modern tool design for component grading incorporating simulation models, efficient tool cooling concepts and tool coating systems. CIRP J. Manuf. Sci. Technol. 2011;4:189–199. doi: 10.1016/j.cirpj.2011.06.001. DOI

Tang B., Li Q., Wang Q., Guo N., Meng X., Shi Y., Su H., Lin L. A novel micromechanical-based secant method to predict the elastoplastic constitutive relation of a tailor-tempered 22MnB5 sheet. Mater. Today Commun. 2022;31:103236. doi: 10.1016/j.mtcomm.2022.103236. DOI

Zhou J., Li Q., Wang Q., Guo N., Meng X., Shi Y., Su H., Lin L. Numerical simulation and experimental investigation of tailored hot stamping of boron steel by partial heating. J. Mater. Res. Technol. 2021;14:1347–1365. doi: 10.1016/j.jmrt.2021.07.025. DOI

Kučerová L., Burdová K., Jeníček Š., Chena I. Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel. Mater. Sci. Eng. A. 2021;814:141195. doi: 10.1016/j.msea.2021.141195. DOI

Lechler J., Merklein M. Hot stamping of ultra strength steels as a key technology for lightweight construction. Mater. Sci. Technol. 2008;3:1698–1709.

Min J., Lin J., Li J. Effect of deformation temperature on the microstructure of boron steel 22MnB5. J. Comput. Theor. Nanosci. 2011;4:938–942. doi: 10.1166/asl.2011.1374. DOI

Jirková H., Opatová K., Jeníček Š., Kučerová L. Press hardening on high-strength steels with higher ductility values. Hot Sheet Met. Form. High-Perform. Steel CHS2. 2022;8:377–384.

Opatová K., Jirková H., Holá M., Jeníček Š. Influence of forming temperature and partitioning on properties of steels for press-hardening. Hot Sheet Met. Form. High-Perform. Steel CHS2. 2022;8:43–50.

Kučerová L., Bystrianský M. Comparison of thermo-mechanical treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP steels. Procedia Eng. 2017;207:1856–1861. doi: 10.1016/j.proeng.2017.10.951. DOI

Hu J., Du L., Xu W., Zhai J., Dong Y., Liu Y., Misra R. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite. Mater. Charact. 2018;136:20–28. doi: 10.1016/j.matchar.2017.11.058. DOI

De Cooman B.C. Structure-properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci. 2004;8:285–303. doi: 10.1016/j.cossms.2004.10.002. DOI

Zhao X., Shen Y., Qiu L., Liu Y., Sun X., Zuo L. Effects of intercritical annealing temperature on mechanical properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C steel. Materials. 2014;7:7891–7906. doi: 10.3390/ma7127891. PubMed DOI PMC

Zhao L., Moreno J., Kruijver S., Sietsma J., van der Zwaag S. Influence of intercritical annealing temperature on phase transformations in a high aluminium TRIP steel. Int. Conf. TRIP-Aided High Strenght Ferr. Alloy. 2002:141–146.

Lee S., De Cooman B.C. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2013;44:5018–5024. doi: 10.1007/s11661-013-1860-2. DOI

Lee S., Lee S.J., Santhosh Kumar S., Lee K., De Cooman B.C. Localized deformation in multiphase, ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2011;42:3638–3651. doi: 10.1007/s11661-011-0636-9. DOI

Jirková H., Opatová K., Jeníček Š., Kučerová L. Combination of press-hardening and isothermal holding in the treatment of high-strength steels. IOP Conf. Ser. Mater. Sci. Eng. 2020;723:012012. doi: 10.1088/1757-899X/723/1/012012. DOI

Jacques P., Girault E., Catlin T., Geerlofs N., Kop T., van der Zwaag S., Delannay F. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: Influence of silicon content on cementite precipitation and austenite retention. Mater. Sci. Eng. A. 1999;273–275,:475–479. doi: 10.1016/S0921-5093(99)00331-7. DOI

Kučerová L., Burdová K., Stehlík A. Effect of soaking temperature on the microstructure and mechanical properties of heat-treated Al-Si-Nb TRIP steel. IOP Conf. Ser. Mater. Sci. Eng. 2020;723:012018. doi: 10.1088/1757-899X/723/1/012018. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...