Changes in Mechanical Properties of Medium Manganese Steel After Forming, Press Hardening, and Heat Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
University of West Bohemia SGS-2024-022
University of West Bohemia
PubMed
40141484
PubMed Central
PMC11943924
DOI
10.3390/ma18061196
PII: ma18061196
Knihovny.cz E-zdroje
- Klíčová slova
- high-strength steels, intercritical annealing, medium manganese steels, press hardening,
- Publikační typ
- časopisecké články MeSH
Solutions and new processes are continually being developed to produce components demonstrating high strength and elongation. This paper focuses on medium manganese steel with a composition of 0.2% carbon, 3% manganese, and 2.15% aluminium (by weight percent). The mechanical properties of the steel and the effect of aluminium and manganese on the microstructure are investigated. The steel sheets are shaped into omega profiles using a press tool, followed by the intercritical annealing of the samples to enhance their ductility. Before the experiment, the anticipated values were a tensile strength (UTS) of approximately 1100 MPa and elongation within 30-35%. A key objective was to achieve a microstructure that incorporates residual austenite. The experimental parameters were carefully derived from an extensive exploration to identify potential weaknesses in the experiment. The main parameters selected were the intercritical annealing (IA) temperature and IA dwell time. The results revealed that the highest recorded UTS was 1262 ± 6 MPa, while the maximum elongation achieved was 16 ± 1%.
Zobrazit více v PubMed
Baldassarre B., Maury T., Mathieux F., Garbarino E., Antonoppoulos I., Sala S. Drivers and Barriers to the Circular Economy Transition: The Case of Recycled Plastics in the Automotive Sector in the European Union. Procedia CIRP. 2015;105:37–42. doi: 10.1016/j.procir.2022.02.007. DOI
Gohoungodji P., Bernadine N.A., Latulippe J.-K., Matos A.L. What stops the automotive industry from going green? A systematic review of barriers to green innovation in the automotive industry. J. Clean. Prod. 2020;277:6. doi: 10.1016/j.jclepro.2020.123524. DOI
Li S., Luo H. Medium-Mn steels for hot forming application in the automotive industry. Int. J. Miner. Metall. Mater. 2021;28:741–753. doi: 10.1007/s12613-020-2179-9. DOI
Shi D., Watanabe K., Naito J., Funada K., Yasui K. Design optimization and application of hot-stamped B pillar with local patchwork blanks. Thin Walled Struct. 2022;170:108523. doi: 10.1016/j.tws.2021.108523. DOI
Schmitt J.-H., Iung T. New developments of advanced high-strength steels for automotive applicationsNouveaux développements dans le domaine des aciers à très haute résistance pour les applications automobiles. Comptes Rendus Phys. 2018;19:641–656. doi: 10.1016/j.crhy.2018.11.004. DOI
Sedaghat-Nejad R., Shahverdi H., Askari-Paykani M. Introduction and mechanical evaluation of a novel 3rd-generation medium manganese AHSS with 86 GPa% of PSE. Mater. Sci. Eng. A. 2022;843:143104. doi: 10.1016/j.msea.2022.143104. DOI
Achtelik T., Herstatt C., Tiwari R. System Orientation as an Enabler for Sustainable Frugal Engineering: Insights from Automotive Material Development. Procedia CIRP. 2023;116:119–124. doi: 10.1016/j.procir.2023.02.021. DOI
Letyagina E. On Assessing the Impact of Automotive Transport on the Environment of Urban Agglomerations Using the Krasnoyarsk Territory as an Example. Transp. Res. Procedia. 2023;68:505–510. doi: 10.1016/j.trpro.2023.02.068. DOI
Lin C., Chu G., Sun L., Chen G., Liu P., Sun W. Radial hydro-forging bending: A novel method to reduce the springback of AHSS tubular component. Int. J. Mach. Tools Manuf. 2021;160:103650. doi: 10.1016/j.ijmachtools.2020.103650. DOI
Jia G., Li Y., Ding W. Alloy composition and process design based on thermodynamic and kinetic simulation: The case of medium Mn steel. Calphad. 2023;82:102601. doi: 10.1016/j.calphad.2023.102601. DOI
Venturato G., Novella M., Bruschi S., Ghiotti A., Shivpuri R. Effects of Phase Transformation in Hot Stamping of 22MnB5 High Strength Steel. Procedia Eng. 2017;183:316–321. doi: 10.1016/j.proeng.2017.04.045. DOI
Ye Q., Han G., Xu Z., Cao Z., Qiao L., Yan Y. Effect of a two-step annealing process on deformation-induced transformation mechanisms in cold-rolled medium manganese steel. Mater. Sci. Eng. A. 2022;831:13. doi: 10.1016/j.msea.2021.142244. DOI
Wang Z., Guo X., Hanlin D., Zhang Y., Xiang C. Research on Hot Stamping-Carbon Partition-Intercritical Annealing Process of Medium Manganese Steel. Materials. 2023;16:576. doi: 10.3390/ma16020576. PubMed DOI PMC
Hu B., Luo H. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel. Acta Mater. 2019;176:250–263. doi: 10.1016/j.actamat.2019.07.014. DOI
Krbata M., Krizan D., Eckert M., Kaar S., Dubec A., Ciger R. Austenite Decomposition of a Lean Medium Mn Steel Suitable for Quenching and Partitioning Process: Comparison of CCT and DCCT Diagram and Their Microstructural Changes. Materials. 2022;15:1753. doi: 10.3390/ma15051753. PubMed DOI PMC
Mori K., Bariani P., Behrens B.-A., Brosius A., Bruschi S., Maeno T., Merklein M., Yanagimoto J. Hot stamping of ultra-high strength steel parts. CIRP Ann. 2017;66:755–777. doi: 10.1016/j.cirp.2017.05.007. DOI
Sugimoto K.-I., Sato S.-H., Kobayashi J., Srivastava A.K. Effects of Cr and Mo on Mechanical Properties of Hot-Forged Medium Carbon TRIP-Aided Bainitic Ferrite Steels. Materials. 2019;9:1066. doi: 10.3390/met9101066. DOI
Cao W., Wang C., Shi J., Wang M.Q., Hui W.J., Dong H. Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing. Mater. Sci. Eng. A. 2011;528:6661–6666. doi: 10.1016/j.msea.2011.05.039. DOI
Mohapatra S., Mandal A., Poojari G., Das S., Das K. Influence of intercritical annealing temperature on microstructure, microtexture, and tensile behavior of TRIP-assisted medium manganese steel. Materialia. 2023;28:101781. doi: 10.1016/j.mtla.2023.101781. DOI
Krbaťa M., Barényi I., Eckert M., Krizan D., Kaar-Schickonger S., Breznicka A. Hot deformation analysis of lean medium-manganese 0.2C3Mn1.5Si steel suitable for quenching et partitioning process. Kov. Mater.-Met. Mater. 2021;59:379–390. doi: 10.4149/km_2021_6_379. DOI
Jirková H., Vrtáček J., Pekovič M., Janda T., Kučerová L. Influence of Chromium and Niobium on the Press-Hardening Process of Multiphase Low-Alloy TRIP Steels. Maerials Sci. Forum. 2021;1016:636–641. doi: 10.4028/www.scientific.net/MSF.1016.636. DOI
Leták R., Jirková H., Kučerová L., Jeníček Š., Volák J. Effect of Forming and Heat Treatment Parameters on the Mechanical Properties of Medium Manganese Steel with 5% Mn. Materials. 2023;16:4340. doi: 10.3390/ma16124340. PubMed DOI PMC
Votava F., Jirková H., Kučerová L., Jeníček Š. Study of Transition Areas in Press-Hardened Steels in a Combined Tool for Hot and Cold Forming. Materials. 2023;16:442. doi: 10.3390/ma16010442. PubMed DOI PMC
Votava F., Vrtáček J., Sýkora J., Weinar M., Jirková H. Design of a Combined Tool for Sheet Tailoring during Press Hardening. Eng. Proc. 2022;26:442. doi: 10.3390/engproc2022026001. DOI
Kozłowska A., Morawiec M., Petrov R., Grajcar A. Microstructure evolution of medium manganese Al-alloyed steel manufactured by double-step intercritical annealing: Effects of heating and cooling rates. Mater. Charact. 2023;199:112816. doi: 10.1016/j.matchar.2023.112816. DOI
Varanasi R.S., Lipiňska-Chwałek M., Mayer J., Gault B., Ponge D. Mechanisms of austenite growth during intercritical annealing in medium manganese steels. Scr. Mater. 2023;206:114228. doi: 10.1016/j.scriptamat.2021.114228. DOI
Kuzmina M., Ponge D., Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel. Acta Mater. 2015;86:182–192. doi: 10.1016/j.actamat.2014.12.021. DOI
Yadav M.K., Kumar D., Kumar N., Bandyopadhyay T.K. Hot-rolled Al-added medium Mn steel (Fe-8Mn-2.85Al-1Si-0.2C): Microstructural evolution and tensile behavior. Materialia. 2023;29:101790. doi: 10.1016/j.mtla.2023.101790. DOI
Wu Z., Jing C., Feng Y., Li Z., Lin T., Zhao J., Liu L. Effect of a new pretreatment-Q&P process on the microstructure and mechanical properties of light-weight Al-containing medium-Mn steels. Mater. Sci. Eng. A. 2023;862:144468. doi: 10.1016/j.msea.2022.144468. DOI
Kozłowska A., Morawiec M., Skowronek A., Grajcar A., Matus K., Nuckowski P.M. Enhancing mechanical properties of hot-rolled Al-alloyed medium-Mn steel by novel double-step intercritical annealing. Mater. Sci. Eng. A. 2023;865:144650. doi: 10.1016/j.msea.2023.144650. DOI
Kooiker H., Perdahcıoğlu E.S., van den Boogaard A.H. Combined athermal and isothermal martensite to austenite reversion kinetics, experiment, and modeling. Mater. Des. 2020;196:109124. doi: 10.1016/j.matdes.2020.109124. DOI
Xu H.F., Zhao J., Cao W., Shi J., Wang C., Wang C., Li J., Dong H. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C–5Mn) Mater. Sci. Eng. A. 2012;532:43544. doi: 10.1016/j.msea.2011.11.009. DOI
Çavuşoğlu O., Çavuşoğlu O., Yılmazoğlu A.G., Üzel U., Aydın H., Güral A. Microstructural features and mechanical properties of 22MnB5 hot stamping steel in different heat treatment conditions. J. Mater. Res. Technol. 2020;9:10901–10908. doi: 10.1016/j.jmrt.2020.07.043. DOI
de Costa L.D.L., Brito A.M.G., Rosiak A., Schaeffer L. Study of the applicability of 22MnB5 sheet metal as protective masks to improve tool life in hot forging process. Int. J. Adv. Manuf. Technol. 2020;107:39–47. doi: 10.1007/s00170-020-05010-9. DOI
Zhou J., Wang B., Huang M., Cui D. Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips. Int. J. Miner. Metall. Mater. 2014;21:544–555. doi: 10.1007/s12613-014-0940-7. DOI
Grajcar A.S.P., Wozniak D. Thermomechanically rolled medium-Mn steels containing retained austenite. Arch. Metall. Mater. 2014;59:4. doi: 10.2478/amm-2014-0286. DOI
Zou Y., Ding H., Zhang Y., Tang Z. Microstructural evolution and strain hardening behavior of a novel two-stage warm rolled ultra-high strength medium Mn steel with heterogeneous structures. Int. J. Plast. 2022;151:103212. doi: 10.1016/j.ijplas.2022.103212. DOI
Yang F., Luo H., Hu C., Pu E., Dong H. Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel. Mater. Sci. Eng. A. 2017;685:115–122. doi: 10.1016/j.msea.2016.12.119. DOI
Zhou L., Xu Y., Mao X., Yang G., Bao S., Zhao G., Miao X. Influence of Austenitizing Parameters on the Microstructures and Mechanical Properties of 22MnB5 Hot Stamping Steel Produced by TSCR Process. Phys. Met. Metallogr. 2020;121:1326–1333. doi: 10.1134/S0031918X20130104. DOI
Chandan A., Mishra G., Kishore K., Bansal G., Sahoo B., Jena P., Kumar S., Rai S., Saha R., Kundu S., et al. Evading the strength-ductility compromise in medium manganese steel by a novel low temperature warm rolling treatment. Mater. Charact. 2023;206:113445. doi: 10.1016/j.matchar.2023.113445. DOI
Mou Y., Li Z., Zhang X., Misra D., He L., Li H. Design of an Effective Heat Treatment Involving Intercritical Hardening for High Strength/High Elongation of 0.2C–3Al–(6–8.5)Mn–Fe TRIP Steels: Microstructural Evolution and Deformation Behavior. Metals. 2019;9:1275. doi: 10.3390/met9121275. DOI