• This record comes from PubMed

Modeling of MEMS Transducers with Perforated Moving Electrodes

. 2023 Apr 24 ; 14 (5) : . [epub] 20230424

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SGS18/200/OHK2/3T/16 Czech Technical University in Prague

Microfabricated electroacoustic transducers with perforated moving plates used as microphones or acoustic sources have appeared in the literature in recent years. However, optimization of the parameters of such transducers for use in the audio frequency range requires high-precision theoretical modeling. The main objective of the paper is to provide such an analytical model of a miniature transducer with a moving electrode in the form of a perforated plate (rigid elastically supported or elastic clamped at all boundaries) loaded by an air gap surrounded by a small cavity. The formulation for the acoustic pressure field inside the air gap enables expression of the coupling of this field to the displacement field of the moving plate and to the incident acoustic pressure through the holes in the plate. The damping effects of the thermal and viscous boundary layers originating inside the air gap, the cavity, and the holes in the moving plate are also taken into account. The analytical results, namely, the acoustic pressure sensitivity of the transducer used as a microphone, are presented and compared to the numerical (FEM) results.

See more in PubMed

Malcovati P., Baschirotti A. The Evolution of Integrated Interfaces for MEMS Microphones. Micromachines. 2018;9:323. doi: 10.3390/mi9070323. PubMed DOI PMC

Ali W.R., Prasad M. Piezoelectric MEMS based acoustic sensors: A review. Sens. Actuator A Phys. 2020;301:111756. doi: 10.1016/j.sna.2019.111756. DOI

Dehé A. Silicon microphone development and application. Sens. Actuator A Phys. 2007;133:283–287. doi: 10.1016/j.sna.2006.06.035. DOI

Bergqvist J., Rudolf F. A silicon condenser microphone using bond and etch-back technology. Sens. Actuator A Phys. 1994;45:115–124. doi: 10.1016/0924-4247(94)00833-7. DOI

Iguchi Y., Goto M., Iwaki M., Ando A., Tanioka K., Tajima T., Takeshi F., Matsunaga S., Yasuno Y. Silicon microphone with wide frequency range and high linearity. Sens. Actuator A Phys. 2007;135:420–425. doi: 10.1016/j.sna.2006.08.016. DOI

Scheeper P.R., Nordstrand B., Gulløv J.O., Liu B., Clausen T., Midjord L., Storgaard-Larsen T. A new measurement microphone based on MEMS technology. J. Microelectromech. Syst. 2003;12:880–891. doi: 10.1109/JMEMS.2003.820260. DOI

Füldner M., Dehé A. Dual Back Plate Silicon MEMS microphone: Balancing High Performance!; Proceedings of the DAGA 2015; Nürnberg, Germany. 16–19 March 2015; pp. 41–43.

Peña-García N.N., Aguilera-Cortés L.A., Gonzáles-Palacios M.A., Raskin J.-P., Herrera-May A.L. Design and Modeling of a MEMS Dual-Backplate Capacitive Microphone with Spring-Supported Diaphragm for Mobile Device Applications. Sensors. 2018;18:3545. doi: 10.3390/s18103545. PubMed DOI PMC

Rong Z., Zhang M., Ning Y., Pang W. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Sci. Rep. 2022;12:16174. doi: 10.1038/s41598-022-19693-5. PubMed DOI PMC

Pinto R.M.R., Gund V., Dias R.A., Nagaraja K.K., Vinayakumar K.B. CMOS-Integrated Aluminum Nitride MEMS: A Review. J. Microelectromech. Syst. 2022;31:500–523. doi: 10.1109/JMEMS.2022.3172766. DOI

Lynes D.D., Chandrahalim H. Influence of a Tailored Oxide Interface on the Quality Factor of Microelectromechanical Resonators. Adv. Mater. Interfaces. 2023;10:2202446. doi: 10.1002/admi.202202446. DOI

Verdot T., Redon E., Ege K., Czarny J., Guianvarc’h C., Guyader J.-L. Microphone with planar nano-gauge detection: Fluid-structure coupling including thermo-viscous effects. Acta Acust. United Acust. 2016;102:517–529. doi: 10.3813/AAA.918969. DOI

Rufer L., De Pasquale G., Esteves J., Randazzo F., Basrour S., Somà A. Micro-acoustic source for hearing applications fabricated with 0.35 μm CMOS-MEMS process. Procedia Eng. 2015;120:944–947. doi: 10.1016/j.proeng.2015.08.811. DOI

Ganji B.A., Sedaghat S.B., Roncaglia A., Belsito L. Design and fabrication of very small MEMS microphone with silicon diaphragm supported by Z-shape arms using SOI wafer. Solid State Electron. 2018;148:27–34. doi: 10.1016/j.sse.2018.07.004. DOI

Ganji B.A., Majlis B.Y. Design and fabrication of a new MEMS capacitive microphone using a perforated aluminum diaphragm. Sens. Actuator A Phys. 2009;149:29–37. doi: 10.1016/j.sna.2008.09.017. DOI

Ganji B.A., Sedaghat S.B., Roncaglia A., Belsito L. Design and fabrication of high performance condenser microphone using C-slotted diaphragm. Microsyst. Technol. 2018;24:3133–3140. doi: 10.1007/s00542-018-3816-3. DOI

Sedaghat S.B., Ganji B.A., Ansari R. Design and modeling of a frog-shape MEMS capacitive microphone using SOI technology. Microsyst. Technol. 2018;24:1061–1070. doi: 10.1007/s00542-017-3461-2. DOI

Škvor Z. On the Acoustical Resistance due to Viscous Losses in the Air Gap of Electrostatic Transducers. Acustica. 1967;19:295–299.

Estèves J., Rufer L., Ekeom D., Basrour S. Lumped-parameters equivalent circuit for condenser microphones modeling. J. Acoust. Soc. Am. 2017;142:2121–2132. doi: 10.1121/1.5006905. PubMed DOI

Zuckerwar A.J. Theoretical response of condenser microphones. J. Acoust. Soc. Am. 1978;64:1278–1285. doi: 10.1121/1.382112. DOI

Lavergne T., Durand S., Bruneau M., Joly N. Dynamic Behavior of Circular Membrane and An Electrostatic Microphone: Effect of Holes In The Backing Electrode. J. Acoust. Soc. Am. 2010;128:3459–3477. doi: 10.1121/1.3504706. PubMed DOI

Lavergne T., Durand S., Bruneau M., Joly N. Analytical Modeling of Electrostatic Transducers in Gases: Behavior of Their Membrane and Sensitivity. Acta Acust. United Acust. 2014;100:440–447. doi: 10.3813/AAA.918724. DOI

Naderyan V., Raspet R., Hickey C. Thermo-viscous acoustic modeling of perforated micro-electro-mechanical systems (MEMS) J. Acoust. Soc. Am. 2020;148:2376–2385. doi: 10.1121/10.0002357. PubMed DOI

Pedersen M., Olthuis W., Bergveld P. On the electromechanical behaviour of thin perforated backplates in silicon condenser microphones; Proceedings of the 8th International Conference on Solid-state Sensors ancl Actuators, and Eurosensors IX; Stockholm, Sweden. 25–29 June 1995; p. 234 A7.

Novak A., Honzík P., Bruneau M. Dynamic behaviour of a planar micro-beam loaded by a fluid-gap: Analytical and numerical approach in a high frequency range, benchmark solutions. J. Sound Vib. 2017;401:36–53. doi: 10.1016/j.jsv.2017.04.026. DOI

Honzík P., Bruneau M. Acoustic fields in thin fluid layers between vibrating walls and rigid boundaries: Integral method. Acta Acust. United Acust. 2015;101:859–862. doi: 10.3813/AAA.918880. DOI

Šimonová K., Honzík P., Bruneau M., Gatignol P. Modelling approach for MEMS transducers with rectangular clamped plate loaded by a thin fluid layer. J. Sound Vib. 2020;473:115246. doi: 10.1016/j.jsv.2020.115246. DOI

Herring Jensen M.J., Sandermann Olsen E. Virtual prototyping of condenser microphone using the finite element method for detailed electric, mechanic, and acoustic characterisation. Proc. Meet. Acoust. 2013;19:030039.

Bruneau M., Scelo T. Fundamentals of Acoustics. ISTE; London, UK: 2006.

Leissa A.W. Vibration of Plates. Scientific and Technical Information Division, National Aeronautics and Space Administration; Washington, DC, USA: 1969.

Šimonová K., Honzík P., Joly N., Durand S., Bruneau M. Modelling of a MEMS transducer using approximate eigenfunctions of a square clamped plate; Proceedings of the 23rd International Congress on Acoustics; Aachen, Germany. 9–13 September 2019; pp. 7361–7368.

Šimonová K., Honzík P., Joly N., Durand S., Bruneau M. Modelling of a MEMS Transducer with a Moving Electrode in Form of Perforated Square Plate; Proceedings of Forum Acusticum 2020; Lyon, France. 7–11 December 2020; pp. 2539–2542.

COMSOL Multiphysics. Acoustics Module User’s Guide. 2022. [(accessed on 23 March 2023)]. Available online: https://doc.comsol.com/6.1/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf.

COMSOL Multiphysics. Structural Mechanics Module User’s Guide. 2022. [(accessed on 23 March 2023)]. Available online: https://doc.comsol.com/6.1/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf.

Le Van Suu T., Durand S., Bruneau M. On the modelling of a clamped plate loaded by a squeeze fluid film: Application to miniaturized sensors. Acta Acust. United Acust. 2010;96:923–935. doi: 10.3813/AAA.918351. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Editorial for the Special Issue on Micromachined Acoustic Transducers for Audio-Frequency Range

. 2025 Jan 08 ; 16 (1) : . [epub] 20250108

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...