Modeling of MEMS Transducers with Perforated Moving Electrodes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SGS18/200/OHK2/3T/16
Czech Technical University in Prague
PubMed
37241545
PubMed Central
PMC10222298
DOI
10.3390/mi14050921
PII: mi14050921
Knihovny.cz E-resources
- Keywords
- MEMS microphones, analytical modeling, electroacoustic transducers, perforated plate,
- Publication type
- Journal Article MeSH
Microfabricated electroacoustic transducers with perforated moving plates used as microphones or acoustic sources have appeared in the literature in recent years. However, optimization of the parameters of such transducers for use in the audio frequency range requires high-precision theoretical modeling. The main objective of the paper is to provide such an analytical model of a miniature transducer with a moving electrode in the form of a perforated plate (rigid elastically supported or elastic clamped at all boundaries) loaded by an air gap surrounded by a small cavity. The formulation for the acoustic pressure field inside the air gap enables expression of the coupling of this field to the displacement field of the moving plate and to the incident acoustic pressure through the holes in the plate. The damping effects of the thermal and viscous boundary layers originating inside the air gap, the cavity, and the holes in the moving plate are also taken into account. The analytical results, namely, the acoustic pressure sensitivity of the transducer used as a microphone, are presented and compared to the numerical (FEM) results.
See more in PubMed
Malcovati P., Baschirotti A. The Evolution of Integrated Interfaces for MEMS Microphones. Micromachines. 2018;9:323. doi: 10.3390/mi9070323. PubMed DOI PMC
Ali W.R., Prasad M. Piezoelectric MEMS based acoustic sensors: A review. Sens. Actuator A Phys. 2020;301:111756. doi: 10.1016/j.sna.2019.111756. DOI
Dehé A. Silicon microphone development and application. Sens. Actuator A Phys. 2007;133:283–287. doi: 10.1016/j.sna.2006.06.035. DOI
Bergqvist J., Rudolf F. A silicon condenser microphone using bond and etch-back technology. Sens. Actuator A Phys. 1994;45:115–124. doi: 10.1016/0924-4247(94)00833-7. DOI
Iguchi Y., Goto M., Iwaki M., Ando A., Tanioka K., Tajima T., Takeshi F., Matsunaga S., Yasuno Y. Silicon microphone with wide frequency range and high linearity. Sens. Actuator A Phys. 2007;135:420–425. doi: 10.1016/j.sna.2006.08.016. DOI
Scheeper P.R., Nordstrand B., Gulløv J.O., Liu B., Clausen T., Midjord L., Storgaard-Larsen T. A new measurement microphone based on MEMS technology. J. Microelectromech. Syst. 2003;12:880–891. doi: 10.1109/JMEMS.2003.820260. DOI
Füldner M., Dehé A. Dual Back Plate Silicon MEMS microphone: Balancing High Performance!; Proceedings of the DAGA 2015; Nürnberg, Germany. 16–19 March 2015; pp. 41–43.
Peña-García N.N., Aguilera-Cortés L.A., Gonzáles-Palacios M.A., Raskin J.-P., Herrera-May A.L. Design and Modeling of a MEMS Dual-Backplate Capacitive Microphone with Spring-Supported Diaphragm for Mobile Device Applications. Sensors. 2018;18:3545. doi: 10.3390/s18103545. PubMed DOI PMC
Rong Z., Zhang M., Ning Y., Pang W. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Sci. Rep. 2022;12:16174. doi: 10.1038/s41598-022-19693-5. PubMed DOI PMC
Pinto R.M.R., Gund V., Dias R.A., Nagaraja K.K., Vinayakumar K.B. CMOS-Integrated Aluminum Nitride MEMS: A Review. J. Microelectromech. Syst. 2022;31:500–523. doi: 10.1109/JMEMS.2022.3172766. DOI
Lynes D.D., Chandrahalim H. Influence of a Tailored Oxide Interface on the Quality Factor of Microelectromechanical Resonators. Adv. Mater. Interfaces. 2023;10:2202446. doi: 10.1002/admi.202202446. DOI
Verdot T., Redon E., Ege K., Czarny J., Guianvarc’h C., Guyader J.-L. Microphone with planar nano-gauge detection: Fluid-structure coupling including thermo-viscous effects. Acta Acust. United Acust. 2016;102:517–529. doi: 10.3813/AAA.918969. DOI
Rufer L., De Pasquale G., Esteves J., Randazzo F., Basrour S., Somà A. Micro-acoustic source for hearing applications fabricated with 0.35 μm CMOS-MEMS process. Procedia Eng. 2015;120:944–947. doi: 10.1016/j.proeng.2015.08.811. DOI
Ganji B.A., Sedaghat S.B., Roncaglia A., Belsito L. Design and fabrication of very small MEMS microphone with silicon diaphragm supported by Z-shape arms using SOI wafer. Solid State Electron. 2018;148:27–34. doi: 10.1016/j.sse.2018.07.004. DOI
Ganji B.A., Majlis B.Y. Design and fabrication of a new MEMS capacitive microphone using a perforated aluminum diaphragm. Sens. Actuator A Phys. 2009;149:29–37. doi: 10.1016/j.sna.2008.09.017. DOI
Ganji B.A., Sedaghat S.B., Roncaglia A., Belsito L. Design and fabrication of high performance condenser microphone using C-slotted diaphragm. Microsyst. Technol. 2018;24:3133–3140. doi: 10.1007/s00542-018-3816-3. DOI
Sedaghat S.B., Ganji B.A., Ansari R. Design and modeling of a frog-shape MEMS capacitive microphone using SOI technology. Microsyst. Technol. 2018;24:1061–1070. doi: 10.1007/s00542-017-3461-2. DOI
Škvor Z. On the Acoustical Resistance due to Viscous Losses in the Air Gap of Electrostatic Transducers. Acustica. 1967;19:295–299.
Estèves J., Rufer L., Ekeom D., Basrour S. Lumped-parameters equivalent circuit for condenser microphones modeling. J. Acoust. Soc. Am. 2017;142:2121–2132. doi: 10.1121/1.5006905. PubMed DOI
Zuckerwar A.J. Theoretical response of condenser microphones. J. Acoust. Soc. Am. 1978;64:1278–1285. doi: 10.1121/1.382112. DOI
Lavergne T., Durand S., Bruneau M., Joly N. Dynamic Behavior of Circular Membrane and An Electrostatic Microphone: Effect of Holes In The Backing Electrode. J. Acoust. Soc. Am. 2010;128:3459–3477. doi: 10.1121/1.3504706. PubMed DOI
Lavergne T., Durand S., Bruneau M., Joly N. Analytical Modeling of Electrostatic Transducers in Gases: Behavior of Their Membrane and Sensitivity. Acta Acust. United Acust. 2014;100:440–447. doi: 10.3813/AAA.918724. DOI
Naderyan V., Raspet R., Hickey C. Thermo-viscous acoustic modeling of perforated micro-electro-mechanical systems (MEMS) J. Acoust. Soc. Am. 2020;148:2376–2385. doi: 10.1121/10.0002357. PubMed DOI
Pedersen M., Olthuis W., Bergveld P. On the electromechanical behaviour of thin perforated backplates in silicon condenser microphones; Proceedings of the 8th International Conference on Solid-state Sensors ancl Actuators, and Eurosensors IX; Stockholm, Sweden. 25–29 June 1995; p. 234 A7.
Novak A., Honzík P., Bruneau M. Dynamic behaviour of a planar micro-beam loaded by a fluid-gap: Analytical and numerical approach in a high frequency range, benchmark solutions. J. Sound Vib. 2017;401:36–53. doi: 10.1016/j.jsv.2017.04.026. DOI
Honzík P., Bruneau M. Acoustic fields in thin fluid layers between vibrating walls and rigid boundaries: Integral method. Acta Acust. United Acust. 2015;101:859–862. doi: 10.3813/AAA.918880. DOI
Šimonová K., Honzík P., Bruneau M., Gatignol P. Modelling approach for MEMS transducers with rectangular clamped plate loaded by a thin fluid layer. J. Sound Vib. 2020;473:115246. doi: 10.1016/j.jsv.2020.115246. DOI
Herring Jensen M.J., Sandermann Olsen E. Virtual prototyping of condenser microphone using the finite element method for detailed electric, mechanic, and acoustic characterisation. Proc. Meet. Acoust. 2013;19:030039.
Bruneau M., Scelo T. Fundamentals of Acoustics. ISTE; London, UK: 2006.
Leissa A.W. Vibration of Plates. Scientific and Technical Information Division, National Aeronautics and Space Administration; Washington, DC, USA: 1969.
Šimonová K., Honzík P., Joly N., Durand S., Bruneau M. Modelling of a MEMS transducer using approximate eigenfunctions of a square clamped plate; Proceedings of the 23rd International Congress on Acoustics; Aachen, Germany. 9–13 September 2019; pp. 7361–7368.
Šimonová K., Honzík P., Joly N., Durand S., Bruneau M. Modelling of a MEMS Transducer with a Moving Electrode in Form of Perforated Square Plate; Proceedings of Forum Acusticum 2020; Lyon, France. 7–11 December 2020; pp. 2539–2542.
COMSOL Multiphysics. Acoustics Module User’s Guide. 2022. [(accessed on 23 March 2023)]. Available online: https://doc.comsol.com/6.1/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf.
COMSOL Multiphysics. Structural Mechanics Module User’s Guide. 2022. [(accessed on 23 March 2023)]. Available online: https://doc.comsol.com/6.1/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf.
Le Van Suu T., Durand S., Bruneau M. On the modelling of a clamped plate loaded by a squeeze fluid film: Application to miniaturized sensors. Acta Acust. United Acust. 2010;96:923–935. doi: 10.3813/AAA.918351. DOI