• This record comes from PubMed

Reproductive toxicity of combined effects of endocrine disruptors on human reproduction

. 2023 ; 11 () : 1162015. [epub] 20230512

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.

See more in PubMed

Abdollahi M., Ranjbar A., Shadnia S., Nikfar S., Rezaie A. (2004). Pesticides and oxidative stress: A review. Med. Sci. Monit. 10, 141–147. PubMed

Agarwal A., Virk G., Ong C., Du Plessis S. S. (2014). Effect of oxidative stress on male reproduction. world J. men's health 32, 1–17. 10.5534/wjmh.2014.32.1.1 PubMed DOI PMC

Alonso-Magdalena P., Garcia-Arevalo M., Quesada I., Nadal A. (2015). Bisphenol-A treatment during pregnancy in mice: A new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology 156, 1659–1670. 10.1210/en.2014-1952 PubMed DOI

Amraoui W., Adjabi N., Bououza F., Boumendjel M., Taibi F., Boumendjel A., et al. (2018). Modulatory role of selenium and vitamin e, natural antioxidants, against bisphenol a-induced oxidative stress in wistar albinos rats. Toxicol. Res. 34, 231–239. 10.5487/TR.2018.34.3.231 PubMed DOI PMC

Andersson A. M., Jørgensen N., Main K., Toppari J., Meyts E. R. D., Leffers H., et al. (2008). Adverse trends in male reproductive health: We may have reached a crucial ‘tipping point’. Wiley Online Libr. 31, 74–80. PubMed PMC

Androutsopoulos V. P., Hernandez A. F., Liesivuori J., Tsatsakis A. M. (2013). A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 307, 89–94. 10.1016/j.tox.2012.09.011 PubMed DOI

Androutsopoulos V. P., Tsatsakis A. M., Spandidos D. A. (2009). Cytochrome p450 cyp1a1: Wider roles in cancer progression and prevention. BMC cancer 9, 187–217. 10.1186/1471-2407-9-187 PubMed DOI PMC

Annamalai J., Namasivayam V. (2015). Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environ. Int. 76, 78–97. 10.1016/j.envint.2014.12.006 PubMed DOI

Aoyama H., Chapin R. E. (2014). Reproductive toxicities of methoxychlor based on estrogenic properties of the compound and its estrogenic metabolite, hydroxyphenyltrichloroethane. Vitamins Hormones 94, 193–210. 10.1016/B978-0-12-800095-3.00007-9 PubMed DOI

Aschengrau A., Coogan P. F., Quinn M. M., Cashins L. J. (1998). Occupational exposure to estrogenic chemicals and the occurrence of breast cancer: An exploratory analysis. Am. J. industrial Med. 34, 6–14. 10.1002/(sici)1097-0274(199807)34:1<6::aid-ajim2>3.0.co;2-x PubMed DOI

Axelstad M., Hass U., Scholze M., Christiansen S., Kortenkamp A., Boberg J. (2018). Edc impact: Reduced sperm counts in rats exposed to human relevant mixtures of endocrine disrupters. Endocr. Connect. 7, 139–148. 10.1530/EC-17-0307 PubMed DOI PMC

Backhaus T., Altenburger R., Arrhenius Å., Blanck H., Faust M., Finizio A., et al. (2003). The beam-project: Prediction and assessment of mixture toxicities in the aquatic environment. Cont. Shelf Res. 23, 1757–1769. 10.1016/j.csr.2003.06.002 DOI

Backhaus T., Scholze M., Grimme L. H. (2000). The single substance and mixture toxicity of quinolones to the bioluminescent bacterium vibrio fischeri. Aquat. Toxicol. Amst. Neth. 49, 49–61. 10.1016/s0166-445x(99)00069-7 PubMed DOI

Badhani B., Sharma N., Kakkar R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. Rsc Adv. 5, 27540–27557. 10.1039/c5ra01911g DOI

Barata C., Baird D., Nogueira A., Soares A. (2006). Riva, M. Toxicity of binary mixtures of metals and pyrethroid insecticides to daphnia magna straus. Implications for multi-substance risks assessment. Aquat. Toxicol. 78, 1–14. PubMed

Barnett-Itzhaki Z., Knapp S., Avraham C., Racowsky C., Hauser R., Bollati V., et al. (2021). Association between follicular fluid phthalate concentrations and extracellular vesicle microRNAs expression. Hum. Reprod. 36, 1590–1599. 10.1093/humrep/deab063 PubMed DOI PMC

Basavarajappa M. S., Craig Z. R., Hernández-Ochoa I., Paulose T., Leslie T. C., Flaws J. A. (2011). Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro . Toxicol. Appl. Pharmacol. 253, 161–169. 10.1016/j.taap.2011.04.007 PubMed DOI PMC

Berghuis S. A., Bos A. F., Groen H., de, Jong W. H., MullerKobold A. C., Wagenmakers-Huizinga L., et al. (2022). Prenatal environmental exposure to persistent organic pollutants and reproductive hormone profile and pubertal development in Dutch adolescents. Int. J. Environ. Res. Public Health 19, 9423. 10.3390/ijerph19159423 PubMed DOI PMC

Białk-Bielińska A., Caban M., Pieczyńska A., Stepnowski P., Stolte S. (2017). Mixture toxicity of six sulfonamides and their two transformation products to green algae scenedesmus vacuolatus and duckweed lemna minor. Chemosphere 173, 542–550. 10.1016/j.chemosphere.2017.01.035 PubMed DOI

Birkhøj M., Nellemann C., Jarfelt K., Jacobsen H., Andersen H. R., Dalgaard M., et al. (2004). The combined antiandrogenic effects of five commonly used pesticides. Toxicol. Appl. Pharmacol. 201, 10–20. 10.1016/j.taap.2004.04.016 PubMed DOI

Bisht S., Faiq M., Tolahunase M., Dada R. (2017). Oxidative stress and male infertility. Nat. Rev. Urol. 14, 470–485. 10.1038/nrurol.2017.69 PubMed DOI

Block K., Kardana A., Igarashi P., Taylor H. S. (2000). In utero diethylstilbestrol (des) exposure alters hox gene expression in the developing mullerian system. FASEB J. 14, 1101–1108. 10.1096/fasebj.14.9.1101 PubMed DOI

Boisen K. A., Chellakooty M., Schmidt I. M., Kai C. M., Damgaard I. N., Suomi A. M., et al. (2005). Hypospadias in a cohort of 1072 Danish newborn boys: Prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at three months of age. J. Clin. Endocrinol. metabolism 90, 4041–4046. 10.1210/jc.2005-0302 PubMed DOI

Boisen K., Kaleva M., Main K., Virtanen H., Haavisto A., Schmidt I., et al. (2004). Difference in prevalence of congenital cryptorchidism in infants between two nordic countries. Lancet 363, 1264–1269. 10.1016/S0140-6736(04)15998-9 PubMed DOI

Bredfeldt T. G., Greathouse K. L., Safe S. H., Hung M.-C., Bedford M. T., Walker C. L. (2010). Xenoestrogen-induced regulation of ezh2 and histone methylation via estrogen receptor signaling to pi3k/akt. Mol. Endocrinol. 24, 993–1006. 10.1210/me.2009-0438 PubMed DOI PMC

Brosche S., Backhaus T. (2010). Toxicity of five protein synthesis inhibiting antibiotics and their mixture to limnic bacterial communities. Aquat. Toxicol. 99, 457–465. 10.1016/j.aquatox.2010.06.008 PubMed DOI

Butt C. M., Stapleton H. M. (2013). Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics. Chem. Res. Toxicol. 26, 1692–1702. 10.1021/tx400342k PubMed DOI PMC

Caliman F. A., Gavrilescu M. (2009). Pharmaceuticals, personal care products and endocrine disrupting agents in the environment–a review. CLEAN–Soil, Air, Water 37, 277–303. 10.1002/clen.200900038 DOI

Cannarella R., Gül M., Rambhatla A., Agarwal A. (2022). Temporal decline of sperm concentration: Role of endocrine disruptors. Endocrine 79, 1–16. 10.1007/s12020-022-03136-2 PubMed DOI

Carlsen E., Giwercman A., Keiding N., Skakkebæk N. E. (1992). Evidence for decreasing quality of semen during past 50 years. Br. Med. J. 305, 609–613. 10.1136/bmj.305.6854.609 PubMed DOI PMC

Caserta D., Di Segni N., Mallozzi M., Giovanale V., Mantovani A., Marci R., et al. (2014). Bisphenol a and the female reproductive tract: An overview of recent laboratory evidence and epidemiological studies. Reproductive Biol. Endocrinol. 12, 37–10. 10.1186/1477-7827-12-37 PubMed DOI PMC

Cedergreen N., Christensen A. M., Kamper A., Kudsk P., Mathiassen S. K., Streibig J. C., et al. (2008). A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ. Toxicol. Chem. 27, 1621–1632. 10.1897/07-474.1 PubMed DOI

Cedergreen N. (2014). Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9, e96580. 10.1371/journal.pone.0096580 PubMed DOI PMC

Chang S. C., Tucker T., Thorogood N. P., Brown C. J. (2006). Mechanisms of x-chromosome inactivation. Front. Biosci. 11, 852–866. 10.2741/1842 PubMed DOI

Chen C., Wang Y., Qian Y., Zhao X., Wang Q. (2015). The synergistic toxicity of the multiple chemical mixtures: Implications for risk assessment in the terrestrial environment. Environ. Int. 77, 95–105. 10.1016/j.envint.2015.01.014 PubMed DOI

Chen L., Qu G., Sun X., Zhang S., Wang L., Sang N., et al. (2013). Characterization of the interaction between cadmium and chlorpyrifos with integrative techniques in incurring synergistic hepatoxicity. PLoS One 8, e59553. 10.1371/journal.pone.0059553 PubMed DOI PMC

Chen M., Tang R., Fu G., Xu B., Zhu P., Qiao S., et al. (2013). Association of exposure to phenols and idiopathic male infertility. J. Hazard. Mater. 250, 115–121. 10.1016/j.jhazmat.2013.01.061 PubMed DOI

Chen X., Xu S., Tan T., Lee S. T., Cheng S. H., Lee F. W., et al. (2014). Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. public health 11, 3156–3168. 10.3390/ijerph110303156 PubMed DOI PMC

Chia V. M., Quraishi S. M., Devesa S. S., Purdue M. P., Cook M. B., McGlynn K. A. (2010). International trends in the incidence of testicular cancer, 1973-2002. Cancer Epidemiol. Prev. Biomarkers 19, 1151–1159. 10.1158/1055-9965.EPI-10-0031 PubMed DOI PMC

Chou T. C. (1976). Derivation and properties of michaelis-menten type and hill type equations for reference ligands. J. Theor. Biol. 59, 253–276. 10.1016/0022-5193(76)90169-7 PubMed DOI

Christensen A. M., Ingerslev F., Baun A. (2006). Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ. Toxicol. Chem. Int. J. 25, 2208–2215. 10.1897/05-415r.1 PubMed DOI

Cleuvers M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 59, 309–315. 10.1016/S0147-6513(03)00141-6 PubMed DOI

Craig Z. R., Hannon P. R., Wang W., Ziv-Gal A., Flaws J. A. (2013). Di-n-butyl phthalate disrupts the expression of genes involved in cell cycle and apoptotic pathways in mouse ovarian antral follicles. Biol. reproduction 88 (23), 23–10. 10.1095/biolreprod.112.105122 PubMed DOI PMC

Craig Z. R., Wang W., Flaws J. A. (2011). Endocrine-disrupting chemicals in ovarian function: Effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 142, 633–646. 10.1530/REP-11-0136 PubMed DOI

Crofton K. M., Craft E. S., Hedge J. M., Gennings C., Simmons J. E., Carchman R. A., et al. (2005). Thyroid-hormone-disrupting chemicals: Evidence for dose-dependent additivity or synergism. Environ. Health Perspect. 113, 1549–1554. 10.1289/ehp.8195 PubMed DOI PMC

Dalla Bona M., Di Leva V., De Liguoro M. (2014). The sensitivity of daphnia magna and daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures. Chemosphere 115, 67–74. 10.1016/j.chemosphere.2014.02.003 PubMed DOI

De Liguoro M., Di Leva V., Gallina G., Faccio E., Pinto G., Pollio A. (2010). Evaluation of the aquatic toxicity of two veterinary sulfonamides using five test organisms. Chemosphere 81, 788–793. 10.1016/j.chemosphere.2010.07.003 PubMed DOI

De Liguoro M., Fioretto B., Poltronieri C., Gallina G. (2009). The toxicity of sulfamethazine to daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere 75, 1519–1524. 10.1016/j.chemosphere.2009.02.002 PubMed DOI

De Silva H., Samarawickrema N., Wickremasinghe A. (2006). Toxicity due to organophosphorus compounds: What about chronic exposure? Trans. R. Soc. Trop. Med. Hyg. 100, 803–806. 10.1016/j.trstmh.2006.05.001 PubMed DOI

Denton D. L., Wheelock C. E., Murray S. A., Deanovic L. A., Hammock B. D., Hinton D. E. (2003). Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (pimephales promelas). Environ. Toxicol. Chem. 22, 336–341. 10.1897/1551-5028(2003)022<0336:jatoea>2.0.co;2 PubMed DOI

Desaulniers D., Leingartner K., Musicki B., Yagminas A., Xiao G. H., Cole J., et al. (2003). Effects of postnatal exposure to mixtures of non-ortho-pcbs, pcdds, and pcdfs in prepubertal female rats. Toxicol. Sci. official J. Soc. Toxicol. 75, 468–480. 10.1093/toxsci/kfg189 PubMed DOI

Desdoits-Lethimonier C., Albert O., Le Bizec B., Perdu E., Zalko D., Courant F., et al. (2012). Human testis steroidogenesis is inhibited by phthalates. Hum. Reprod. 27, 1451–1459. 10.1093/humrep/des069 PubMed DOI

Desmarchais A., Téteau O., Kasal-Hoc N., Cognié J., Lasserre O., Papillier P., et al. (2022). Chronic low BPS exposure through diet impairs in vitro embryo production parameters according to metabolic status in the Ewe. Ecotoxicol. Environ. Saf. 229, 113096. 10.1016/j.ecoenv.2021.113096 PubMed DOI

Dias da Silva D., Silva E., Carmo H. (2013). Cytotoxic effects of amphetamine mixtures in primary hepatocytes are severely aggravated under hyperthermic conditions. Toxicol. vitro Int. J. Publ. Assoc. BIBRA 27, 1670–1678. 10.1016/j.tiv.2013.04.010 PubMed DOI

Dietrich S., Ploessl F., Bracher F., Laforsch C. (2010). Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in daphnia magna–a multigenerational study. Chemosphere 79, 60–66. 10.1016/j.chemosphere.2009.12.069 PubMed DOI

Ding K., Lu L., Wang J., Wang J., Zhou M., Zheng C., et al. (2017). In vitro and in silico investigations of the binary-mixture toxicity of phthalate esters and cadmium (ii) to vibrio qinghaiensis sp.-q67. Sci. Total Environ. 580, 1078–1084. 10.1016/j.scitotenv.2016.12.062 PubMed DOI

Dorea J. G. (2006). Fish meal in animal feed and human exposure to persistent bioaccumulative and toxic substances. J. food Prot. 69, 2777–2785. 10.4315/0362-028x-69.11.2777 PubMed DOI

Dou R. N., Liu S. S., Mo L. Y., Liu H. L., Deng F. C. (2011). A novel direct equipartition ray design (equray) procedure for toxicity interaction between ionic liquid and dichlorvos. Environ. Sci. Pollut. Res. Int. 18, 734–742. 10.1007/s11356-010-0419-7 PubMed DOI

Duty S. M., Silva M. J., Barr D. B., Brock J. W., Ryan L., Chen Z., et al. (2003). Phthalate exposure and human semen parameters. Epidemiology 14, 269–277. 10.1097/01.ede.0000059950.11836.16 PubMed DOI

Dwivedi D., Megha K., Mishra R., Mandal P. K. (2020). Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res. 45, 1461–1480. 10.1007/s11064-020-03030-1 PubMed DOI

Ehrlich S., Williams P. L., Missmer S. A., Flaws J. A., Berry K. F., Calafat A. M., et al. (2012). Urinary bisphenol a concentrations and implantation failure among women undergoing in vitro fertilization. Environ. health Perspect. 120, 978–983. 10.1289/ehp.1104307 PubMed DOI PMC

El-Beshbishy H. A., Bahashwan S. A., Aly H. A., Fakher H. A. (2011). Abrogation of cisplatin-induced nephrotoxicity in mice by alpha lipoic acid through ameliorating oxidative stress and enhancing gene expression of antioxidant enzymes. Eur. J. Pharmacol. 668, 278–284. 10.1016/j.ejphar.2011.06.051 PubMed DOI

Elsby R., Maggs J. L., Ashby J., Park B. K. (2001). Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol a: Implications for extrapolation to humans. J. Pharmacol. Exp. Ther. 297, 103–113. PubMed

Escher B. I., Fenner K. (2011). Recent advances in environmental risk assessment of transformation products. Environ. Sci. Technol. 45, 3835–3847. 10.1021/es1030799 PubMed DOI

Eu-Scoop (2000). Scientific co-operation on questions relating to food. Assessment of dietary intake of dioxins and related pcbs by the population of the eu member states. Brussels, Belgium: European Commission, Directorate-General Health and Consumer Protection. Task 3.2.5, final report Scoop/Diox/Report/1.

Falck L., Forsberg J. G. (1996). Immunohistochemical studies on the expression and estrogen dependency of egf and its receptor and c‐fos proto‐oncogene in the uterus and vagina of normal and neonatally estrogen‐treated mice. Anatomical Rec. 245, 459–471. PubMed

Fanaei H., Khayat S., Halvaei I., Ramezani V., Azizi Y., Kasaeian A., et al. (2014). Effects of ascorbic acid on sperm motility, viability, acrosome reaction and DNA integrity in teratozoospermic samples. Iran. J. reproductive Med. 12, 103–110. PubMed PMC

Fang S., Wang D., Zhang X., Long X., Qin M., Lin Z., et al. (2016). Similarities and differences in combined toxicity of sulfonamides and other antibiotics towards bacteria for environmental risk assessment. Environ. Monit. Assess. 188, 429. 10.1007/s10661-016-5422-0 PubMed DOI

Figà‐Talamanca I., Traina M., Urbani E. (2001). Occupational exposures to metals, solvents and pesticides: Recent evidence on male reproductive effects and biological markers. Occup. Med. 51, 174–188. 10.1093/occmed/51.3.174 PubMed DOI

Fiorentino A., Rizzo. L., Guilloteau H., Bellanger X., Merlin C. (2017). Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102. Environ. Sci. Pollut. Res. 24, 1871–1879. 10.1007/s11356-016-7981-6 PubMed DOI

Fisher J. S. (2004a). Are all edc effects mediated via steroid hormone receptors? Toxicology 205, 33–41. 10.1016/j.tox.2004.06.035 PubMed DOI

Fisher J. S. (2004b). Environmental anti-androgens and male reproductive health: Focus on phthalates and testicular dysgenesis syndrome. Reproduction 127, 305–315. 10.1530/rep.1.00025 PubMed DOI

Flohé L., Budde H., Hofmann B. (2003). Peroxiredoxins in antioxidant defense and redox regulation. Biofactors 19, 3–10. 10.1002/biof.5520190102 PubMed DOI

Foster P. M. (2005). Mode of action: Impaired fetal leydig cell function--effects on male reproductive development produced by certain phthalate esters. Crit. Rev. Toxicol. 35, 713–719. 10.1080/10408440591007395 PubMed DOI

Gaido K. W., Maness S. C., McDonnell D. P., Dehal S. S., Kupfer D., Safe S. (2000). Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: Structure-activity studies. Mol. Pharmacol. 58, 852–858. 10.1124/mol.58.4.852 PubMed DOI

Galli F., Azzi A., Birringer M., Cook-Mills J. M., Eggersdorfer M., Frank J., et al. (2017). Vitamin e: Emerging aspects and new directions. Free Radic. Biol. Med. 102, 16–36. 10.1016/j.freeradbiomed.2016.09.017 PubMed DOI

Gandhi J., Hernandez R. J., Chen A., Smith N. L., Sheynkin Y. R., Joshi G., et al. (2017). Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 25, 103–110. 10.1017/S0967199417000028 PubMed DOI

Gao H. T., Xu R., Cao W. X., Di Q. N., Li R. X., Lu L., et al. (2018). Combined effects of simultaneous exposure to six phthalates and emulsifier glycerol monosterate on male reproductive system in rats. Toxicol. Appl. Pharmacol. 341, 87–97. 10.1016/j.taap.2018.01.013 PubMed DOI

Ge H. L., Liu S. S., Su B. X., Qin L. T. (2014). Predicting synergistic toxicity of heavy metals and ionic liquids on photobacterium q67. J. Hazard Mater 268, 77–83. 10.1016/j.jhazmat.2014.01.006 PubMed DOI

Geng X., Shao H., Zhang Z., Ng J. C., Peng C. (2015). Malathion-induced testicular toxicity is associated with spermatogenic apoptosis and alterations in testicular enzymes and hormone levels in male wistar rats. Environ. Toxicol. Pharmacol. 39, 659–667. 10.1016/j.etap.2015.01.010 PubMed DOI

Geyer H. J., Rimkus G. G., Scheunert I., Kaune A., Schramm K.-W., Kettrup A., et al. (2000). “Bioaccumulation and occurrence of endocrine-disrupting chemicals (edcs), persistent organic pollutants (pops), and other organic compounds in fish and other organisms including humans,” in Bioaccumulation–new aspects and developments (Springer; ), 1–166.

Ghosh A., Tripathy A., Ghosh D. (2022). Impact of endocrine disrupting chemicals (EDCs) on reproductive health of human,” in Proceedings of the zoological society (Springer India; ) 75, 16–30.

Ginebreda A., Kuzmanovic M., Guasch H., de Alda M. L., López-Doval J. C., Muñoz I., et al. (2014). Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Sci. total Environ. 468-469, 715–723. 10.1016/j.scitotenv.2013.08.086 PubMed DOI

González L. L., Galán M. L., García N. R., Tello A. G., Sánchez A. B. (2008). Trends in the incidence of testicular germ cell cancer in a 300.000 inhabitants Spanish population (1991-2005). Actas Urol. espanolas 32, 691–695. 10.1016/s0210-4806(08)73916-0 PubMed DOI

González-Pleiter M., Gonzalo S., Rodea-Palomares I., Leganés F., Rosal R., Boltes K., et al. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 47, 2050–2064. 10.1016/j.watres.2013.01.020 PubMed DOI

Gray L. E., Ostby J., Furr J., Wolf C. J., Lambright C., Parks L., et al. (2001). Effects of environmental antiandrogens on reproductive development in experimental animals. Hum. Reprod. update 7, 248–264. 10.1093/humupd/7.3.248 PubMed DOI

Grimm F. A., Lehmler H. J., He X., Robertson L. W., Duffel M. W. (2013). Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ. Health Perspect. 121, 657–662. 10.1289/ehp.1206198 PubMed DOI PMC

Guo J., Guo W., Zhang T., Zheng Y., Han B., Zhang Z., et al. (2022). Gestational exposure to phenanthrene induces follicular atresia and endocrine dyscrasia in F1 adult female. Ecotoxicol. Environ. Saf. 232, 113291. 10.1016/j.ecoenv.2022.113291 PubMed DOI

Gupta R. K., Singh J. M., Leslie T. C., Meachum S., Flaws J. A., Yao H. H. (2010). Di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate inhibit growth and reduce estradiol levels of antral follicles in vitro . Toxicol. Appl. Pharmacol. 242, 224–230. 10.1016/j.taap.2009.10.011 PubMed DOI PMC

Hadrup N., Taxvig C., Pedersen M., Nellemann C., Hass U., Vinggaard A. M. (2013). Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro . PLoS One 8, e70490. 10.1371/journal.pone.0070490 PubMed DOI PMC

Hamid N., Junaid M., Pei D. S. (2020). Individual and combined mechanistic toxicity of sulfonamides and their implications for ecological risk assessment in the three gorges reservoir area (tgra), China. J. Hazard Mater 382, 121106. 10.1016/j.jhazmat.2019.121106 PubMed DOI

Hannon P. R., Brannick K. E., Wang W., Gupta R. K., Flaws J. A. (2015). Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles. Toxicol. Appl. Pharmacol. 284, 42–53. 10.1016/j.taap.2015.02.010 PubMed DOI PMC

Hao Y., Zheng G., Li Q., Xu H., Zhang Y., Yan L. (2013). “Combined toxic effects of dbp and dehp on sperm in male mice,” in Informatics and management science i (Springer; ), 729–734.

Hauser R., Gaskins A. J., Souter I., Smith K. W., Dodge L. E., Ehrlich S., et al. (2016). Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: Results from the Earth study. Environ. health Perspect. 124, 831–839. 10.1289/ehp.1509760 PubMed DOI PMC

Hauser R., Meeker J., Singh N., Silva M., Ryan L., Duty S., et al. (2007). DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum. Reprod. 22, 688–695. 10.1093/humrep/del428 PubMed DOI

He W., Guo W., Qian Y., Zhang S., Ren D., Liu S. (2015). Synergistic hepatotoxicity by cadmium and chlorpyrifos: Disordered hepatic lipid homeostasis. Mol. Med. Rep. 12, 303–308. 10.3892/mmr.2015.3381 PubMed DOI

Heindel J. J. (2019). The developmental basis of disease: Update on environmental exposures and animal models. Basic and Clin. Pharmacol. Toxicol. 125, 5–13. 10.1111/bcpt.13118 PubMed DOI

Ho S.-M., Tang W.-Y., De Frausto J. B., Prins G. S. (2006). Developmental exposure to estradiol and bisphenol a increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 66, 5624–5632. 10.1158/0008-5472.CAN-06-0516 PubMed DOI PMC

Holmboe S. A., Henriksen L. S., Frederiksen H., Andersson A. M., Priskorn L., Jørgensen N., et al. (2022). Prenatal exposure to phenols and benzophenones in relation to markers of male reproductive function in adulthood. Front. Endocrinol. 13, 1071761. 10.3389/fendo.2022.1071761 PubMed DOI PMC

Hossain F., Ali O., D'souza U. J., Naing D. K. S. (2010). Effects of pesticide use on semen quality among farmers in rural areas of sabah, Malaysia. J. Occup. health, 1009270143. PubMed

Hotchkiss A. K., Parks-Saldutti L. G., Ostby J. S., Lambright C., Furr J., Vandenbergh J. G., et al. (2004). A mixture of the "antiandrogens" linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biol. Reprod. 71, 1852–1861. 10.1095/biolreprod.104.031674 PubMed DOI

Huang B., Feng M., Li D., Yang Y. (2015). Antagonistic joint toxicity assessment of two current-use phthalates with waterborne copper in liver of carassius auratus using biochemical biomarkers. Ecotoxicol. Environ. Saf. 116, 107–112. 10.1016/j.ecoenv.2015.03.009 PubMed DOI

Huang B., Li D., Yang Y. (2016). Joint toxicity of two phthalates with waterborne copper to daphnia magna and photobacterium phosphoreum. Bull. Environ. Contam. Toxicol. 97, 380–386. 10.1007/s00128-016-1879-3 PubMed DOI

Huang W. Y., Liu F., Liu S. S., Ge H. L., Chen H. H. (2011). Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar action mechanisms to vibrio qinghaiensis sp.Nov.Q67. Ecotoxicol. Environ. Saf. 74, 1600–1606. 10.1016/j.ecoenv.2011.01.007 PubMed DOI

Ighodaro O., Akinloye O. (2018). First line defence antioxidants-superoxide dismutase (sod), catalase (cat) and glutathione peroxidase (gpx): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 54, 287–293. 10.1016/j.ajme.2017.09.001 DOI

Jain S., Kumar C. M., Suranagi U. D., Mediratta P. K. (2011). Protective effect of n-acetylcysteine on bisphenol a-induced cognitive dysfunction and oxidative stress in rats. Food Chem. Toxicol. 49, 1404–1409. 10.1016/j.fct.2011.03.032 PubMed DOI

Jensen J., Sverdrup L. E. (2002). Joint toxicity of linear alkylbenzene sulfonates and pyrene on folsomia fimetaria. Ecotoxicol. Environ. Saf. 52, 75–81. 10.1006/eesa.2002.2149 PubMed DOI

Jensen M. S., Toft G., Thulstrup A. M., Bonde J. P., Olsen J. (2007). Cryptorchidism according to maternal gestational smoking. Epidemiology 18, 220–225. 10.1097/01.ede.0000254061.90686.9f PubMed DOI

Jia J., Zhu F., Ma X., Cao Z., Cao Z. W., Li Y., et al. (2009). Mechanisms of drug combinations: Interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111–128. 10.1038/nrd2683 PubMed DOI

Jirtle R. L., Skinner M. K. (2007). Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262. 10.1038/nrg2045 PubMed DOI PMC

Jørgensen N., Andersen A.-G., Eustache F., Irvine D. S., Suominen J., Petersen J. H., et al. (2001). Regional differences in semen quality in Europe. Hum. Reprod. 16, 1012–1019. 10.1093/humrep/16.5.1012 PubMed DOI

Jørgensen N., Carlsen E., Nermoen I., Punab M., Suominen J., Andersen A.-G., et al. (2002). East–west gradient in semen quality in the nordic–baltic area: A study of men from the general population in Denmark, Norway, Estonia and Finland. Hum. Reprod. 17, 2199–2208. 10.1093/humrep/17.8.2199 PubMed DOI

Jørgensen N., Joensen U. N., Jensen T. K., Jensen M. B., Almstrup K., Olesen I. A., et al. (2012). Human semen quality in the new millennium: A prospective cross-sectional population-based study of 4867 men. BMJ open 2, e000990. 10.1136/bmjopen-2012-000990 PubMed DOI PMC

Jørgensen N., Vierula M., Jacobsen R., Pukkala E., Perheentupa A., Virtanen H., et al. (2011). Recent adverse trends in semen quality and testis cancer incidence among Finnish men. Int. J. Androl. 34, e37–e48. 10.1111/j.1365-2605.2010.01133.x PubMed DOI PMC

Jouannet P., Wang C., Eustache F., Kold‐Jensen T., Auger J. (2001). Semen quality and male reproductive health: The controversy about human sperm concentration decline. Apmis 109, 333–344. 10.1034/j.1600-0463.2001.090502.x PubMed DOI

Kabir E. R., Rahman M. S., Rahman I. (2015). A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol. 40, 241–258. 10.1016/j.etap.2015.06.009 PubMed DOI

Kandaraki E., Chatzigeorgiou A., Livadas S., Palioura E., Economou F., Koutsilieris M., et al. (2011). Endocrine disruptors and polycystic ovary syndrome (pcos): Elevated serum levels of bisphenol a in women with pcos. J. Clin. Endocrinol. Metabolism 96, E480–E484. 10.1210/jc.2010-1658 PubMed DOI

Kapka-Skrzypczak L., Cyranka M., Skrzypczak M., Kruszewski M. (2011). Biomonitoring and biomarkers of organophosphate pesticides exposure-state of the art. Ann. Agric. Environ. Med. 18, 294–303. PubMed

Karthikeyan B. S., Ravichandran J., Mohanraj K., Vivek-Ananth R. P., Samal A. (2019). A curated knowledgebase on endocrine disrupting chemicals and their biological systems-level perturbations. Sci. total Environ. 692, 281–296. 10.1016/j.scitotenv.2019.07.225 PubMed DOI

Katsnelson B. A., Panov V. G., Minigaliyeva I. A., Varaksin A. N., Privalova L. I., Slyshkina T. V., et al. (2015). Further development of the theory and mathematical description of combined toxicity: An approach to classifying types of action of three-factorial combinations (a case study of manganese-chromium-nickel subchronic intoxication). Toxicology 334, 33–44. 10.1016/j.tox.2015.05.005 PubMed DOI

Kavlock R. J., Daston G. P., DeRosa C., Fenner-Crisp P., Gray L. E., Kaattari S., et al. (1996). Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the us epa-sponsored workshop. Environ. health Perspect. 104, 715–740. 10.1289/ehp.96104s4715 PubMed DOI PMC

Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. (1995). Persistent ddt metabolite p,p'-dde is a potent androgen receptor antagonist. Nature 375, 581–585. 10.1038/375581a0 PubMed DOI

Kienzler A., Bopp S. K., van der Linden S., Berggren E., Worth A. (2016). Regulatory assessment of chemical mixtures: Requirements, current approaches and future perspectives. Regul. Toxicol. Pharmacol. RTP 80, 321–334. 10.1016/j.yrtph.2016.05.020 PubMed DOI

Knez J. (2013). Endocrine-disrupting chemicals and male reproductive health. Reprod. Biomed. online 26, 440–448. 10.1016/j.rbmo.2013.02.005 PubMed DOI

Korkmaz A., Ahbab M. A., Kolankaya D., Barlas N. (2010). Influence of vitamin c on bisphenol a, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem. Toxicol. 48, 2865–2871. 10.1016/j.fct.2010.07.019 PubMed DOI

Kortenkamp A., Altenburger R. (1998). Synergisms with mixtures of xenoestrogens: A reevaluation using the method of isoboles. Sci. total Environ. 221, 59–73. 10.1016/s0048-9697(98)00261-7 PubMed DOI

Kortenkamp A. (2007). Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 115 (1), 98–105. 10.1289/ehp.9357 PubMed DOI PMC

Koureas M., Tsakalof A., Tzatzarakis M., Vakonaki E., Tsatsakis A., Hadjichristodoulou C. (2014). Biomonitoring of organophosphate exposure of pesticide sprayers and comparison of exposure levels with other population groups in thessaly (Greece). Occup. Environ. Med. 71, 126–133. 10.1136/oemed-2013-101490 PubMed DOI

LaPlante C. D., Catanese M. C., Bansal R., Vandenberg L. N. (2017). Bisphenol S alters the lactating mammary gland and nursing behaviors in mice exposed during pregnancy and lactation. Endocrinology 158, 3448–3461. 10.1210/en.2017-00437 PubMed DOI PMC

Lavogina D., Visser N., Samuel K., Davey E., Bjorvang R. D., Hassan J., et al. (2022). Endocrine disrupting chemicals interfere with decidualization of human primary endometrial stromal cells in vitro . Front. Endocrinol. 13, 903505. 10.3389/fendo.2022.903505 PubMed DOI PMC

Lecante L. L., Leverrier-Penna S., Gicquel T., Giton F., Costet N., Desdoits-Lethimonier C., et al. (2022). Acetaminophen (APAP, paracetamol) interferes with the first trimester human fetal ovary development in an ex vivo model. J. Clin. Endocrinol. Metabolism 107, 1647–1661. 10.1210/clinem/dgac080 PubMed DOI PMC

Lee S. G., Kim J. Y., Chung J.-Y., Kim Y.-J., Park J.-E., Oh S., et al. (2013). Bisphenol a exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17β-estradiol synthesis via downregulation of aromatase in rat ovary. Environ. health Perspect. 121, 663–669. 10.1289/ehp.1205823 PubMed DOI PMC

Lemaire G., Mnif W., Mauvais P., Balaguer P., Rahmani R. (2006). Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 79, 1160–1169. 10.1016/j.lfs.2006.03.023 PubMed DOI

Li D.-K., Zhou Z., Miao M., He Y., Wang J., Ferber J., et al. (2011). Urine bisphenol-a (bpa) level in relation to semen quality. Fertil. Steril. 95, 625–630. 10.1016/j.fertnstert.2010.09.026 PubMed DOI

Li D., Sun W., Jiang X., Yu Z., Xia Y., Cheng S., et al. (2022). Polystyrene nanoparticles enhance the adverse effects of di-(2-ethylhexyl) phthalate on male reproductive system in mice. Ecotoxicol. Environ. Saf. 245, 114104. 10.1016/j.ecoenv.2022.114104 PubMed DOI

Li Q. Q., Loganath A., Chong Y. S., Tan J., Obbard J. P. (2006). Persistent organic pollutants and adverse health effects in humans. J. Toxicol. Environ. health. Part A 69, 1987–2005. 10.1080/15287390600751447 PubMed DOI

Li S., Hansman R., Newbold R., Davis B., McLachlan J. A., Barrett J. C. (2003). Neonatal diethylstilbestrol exposure induces persistent elevation of c‐fos expression and hypomethylation in its exon‐4 in mouse uterus. Mol. Carcinog. Publ. Coop. Univ. Tex. MD Anderson Cancer Cent. 38, 78–84. 10.1002/mc.10147 PubMed DOI

Li S., Washburn K. A., Moore R., Uno T., Teng C., Newbold R. R., et al. (1997). Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res. 57, 4356–4359. PubMed

Lifeng T., Shoulin W., Junmin J., Xuezhao S., Yannan L., Qianli W., et al. (2006). Effects of fenvalerate exposure on semen quality among occupational workers. Contraception 73, 92–96. 10.1016/j.contraception.2005.06.067 PubMed DOI

Lin Z., Ping Z., Kong D., Yin K., Cai Z. (2005). The ratios of individual chemicals in a mixture determine the degree of joint effect: The climax hypothesis. Archives Environ. Contam. Toxicol. 49, 1–8. 10.1007/s00244-003-0206-2 PubMed DOI

Little J. C., Weschler C. J., Nazaroff W. W., Liu Z., Cohen Hubal E. A. (2012). Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. Environ. Sci. Technol. 46, 11171–11178. 10.1021/es301088a PubMed DOI

Liu L., Bao H., Liu F., Zhang J., Shen H. (2012). Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ. Int. 42, 78–83. 10.1016/j.envint.2011.04.005 PubMed DOI

Long M., Knudsen A.-K. S., Pedersen H. S., Bonefeld-Jørgensen E. C. (2015). Food intake and serum persistent organic pollutants in the Greenlandic pregnant women: The accept sub-study. Sci. Total Environ. 529, 198–212. 10.1016/j.scitotenv.2015.05.022 PubMed DOI

López-Rodríguez D., Aylwin C. F., Delli V., Sevrin E., Campanile M., Martin M., et al. (2021). Multi-and transgenerational outcomes of an exposure to a mixture of endocrine-disrupting chemicals (EDCs) on puberty and maternal behavior in the female rat. Environ. health Perspect. 129, 087003. 10.1289/EHP8795 PubMed DOI PMC

Louis G. M. B., Peterson C. M., Chen Z., Croughan M., Sundaram R., Stanford J., et al. (2013). Bisphenol a and phthalates and endometriosis: The endometriosis: Natural history, diagnosis and outcomes study. Fertil. Steril. 100, 162–169. 10.1016/j.fertnstert.2013.03.026 PubMed DOI PMC

Luijten M., Vlaanderen J., Kortenkamp A., Antignac J. P., Barouki R., Bil W., et al. (2023). Mixture risk assessment and human biomonitoring: Lessons learnt from HBM4EU. Int. J. Hyg. Environ. Health 249, 114135. 10.1016/j.ijheh.2023.114135 PubMed DOI

Madureira T. V., Rocha M. J., Cruzeiro C., Rodrigues I., Monteiro R. A., Rocha E. (2012). The toxicity potential of pharmaceuticals found in the douro river estuary (Portugal): Evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and cyp1a immunohistochemistry, after sub-acute exposures of the zebrafish model. Environ. Toxicol. Pharmacol. 34, 34–45. 10.1016/j.etap.2012.02.007 PubMed DOI

Maggio A. G., Shu H. T., Laufer B. I., Bi C., Lai Y., LaSalle J. M., et al. (2022). Elevated exposures to persistent endocrine disrupting compounds impact the sperm methylome in regions associated with autism spectrum disorder. Front. Genet. 13, 929471. 10.3389/fgene.2022.929471 PubMed DOI PMC

Mahalingaiah S., Missmer S. A., Maity A., Williams P. L., Meeker J. D., Berry K., et al. (2012). Association of hexachlorobenzene (hcb), dichlorodiphenyltrichloroethane (ddt), and dichlorodiphenyldichloroethylene (dde) with in vitro fertilization (ivf) outcomes. Environ. health Perspect. 120, 316–320. 10.1289/ehp.1103696 PubMed DOI PMC

Martinez-Arguelles D., Culty M., Zirkin B., Papadopoulos V. (2009). In utero exposure to di-(2-ethylhexyl) phthalate decreases mineralocorticoid receptor expression in the adult testis. Endocrinology 150, 5575–5585. 10.1210/en.2009-0847 PubMed DOI PMC

Meeker J. D., Ehrlich S., Toth T. L., Wright D. L., Calafat A. M., Trisini A. T., et al. (2010). Semen quality and sperm DNA damage in relation to urinary bisphenol a among men from an infertility clinic. Reprod. Toxicol. 30, 532–539. 10.1016/j.reprotox.2010.07.005 PubMed DOI PMC

Mehrpour O., Karrari P., Zamani N., Tsatsakis A. M., Abdollahi M. (2014). Occupational exposure to pesticides and consequences on male semen and fertility: A review. Toxicol. Lett. 230, 146–156. 10.1016/j.toxlet.2014.01.029 PubMed DOI

Meli R., Monnolo A., Annunziata C., Pirozzi C., Ferrante M. C. (2020). Oxidative stress and bpa toxicity: An antioxidant approach for male and female reproductive dysfunction. Antioxidants (Basel, Switz. 9. PubMed PMC

Mendiola J., Jørgensen N., Andersson A.-M., Calafat A. M., Ye X., Redmon J. B., et al. (2010). Are environmental levels of bisphenol a associated with reproductive function in fertile men? Environ. health Perspect. 118, 1286–1291. 10.1289/ehp.1002037 PubMed DOI PMC

Miller M. F., Goodson W. H., Manjili M. H., Kleinstreuer N., Bisson W. H., Lowe L. (2017). Low-dose mixture hypothesis of carcinogenesis workshop: Scientific underpinnings and research recommendations. Environ. Health Perspect. 125, 163–169. 10.1289/EHP411 PubMed DOI PMC

Miyawaki J., Sakayama K., Kato H., Yamamoto H., Masuno H. (2007). Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J. Atheroscler. thrombosis 14, 245–252. 10.5551/jat.e486 PubMed DOI

Mohammed E. T., Hashem K. S., Ahmed A. E., Aly M. T., Aleya L., Abdel-Daim M. M. (2020). Ginger extract ameliorates bisphenol a (bpa)-induced disruption in thyroid hormones synthesis and metabolism: Involvement of nrf-2/ho-1 pathway. Sci. Total Environ. 703, 134664. 10.1016/j.scitotenv.2019.134664 PubMed DOI

Monneret C. (2017). What is an endocrine disruptor. ? Comptes Rendus Biologies 340, 403–405. 10.1016/j.crvi.2017.07.004 PubMed DOI

Moriyama K., Tagami T., Akamizu T., Usui T., Saijo M., Kanamoto N., et al. (2002). Thyroid hormone action is disrupted by bisphenol a as an antagonist. The Journal of clinical endocrinology and metabolism 87, 5185–5190. 10.1210/jc.2002-020209 PubMed DOI

Mortazavi M., Salehi I., Alizadeh Z., Vahabian M., Roushandeh A. M. (2014). Protective effects of antioxidants on sperm parameters and seminiferous tubules epithelium in high fat-fed rats. Journal of reproduction and infertility 15, 22–28. PubMed PMC

Mrema E. J., Rubino F. M., Brambilla G., Moretto A., Tsatsakis A. M., Colosio C. (2013). Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 307, 74–88. 10.1016/j.tox.2012.11.015 PubMed DOI

Muncke J. (2011). Endocrine disrupting chemicals and other substances of concern in food contact materials: An updated review of exposure, effect and risk assessment. The Journal of steroid biochemistry and molecular biology 127, 118–127. 10.1016/j.jsbmb.2010.10.004 PubMed DOI

Narayana K., Prashanthi N., Nayanatara A., Kumar H. C., Abhilash K., Bairy K. (2006). Neonatal methyl parathion exposure affects the growth and functions of the male reproductive system in the adult rat. Folia morphologica 65, 26–33. PubMed

Natvig D., Sylvester K., Dvorachek W., Baldwin J. (1996). “Superoxide dismutases and catalases,” in Biochemistry and molecular biology (Springer; ), 191–209.

Nellemann C., Dalgaard M., Lam H. R., Vinggaard A. M. (2003). The combined effects of vinclozolin and procymidone do not deviate from expected additivity in vitro and in vivo . Toxicological sciences an official journal of the Society of Toxicology 71, 251–262. 10.1093/toxsci/71.2.251 PubMed DOI

Nelson K. G., Sakai Y., Eitzman B., Steed T., McLachlan J. (1994). Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes. Cell growth and differentiation the molecular biology journal of the American Association for Cancer Research 5, 595–606. PubMed

Nordkap L., Joensen U. N., Jensen M. B., Jørgensen N. (2012). Regional differences and temporal trends in male reproductive health disorders: Semen quality may be a sensitive marker of environmental exposures. Molecular and cellular endocrinology 355, 221–230. 10.1016/j.mce.2011.05.048 PubMed DOI

Noyes P. D., Lema S. C., Macaulay L. J., Douglas N. K., Stapleton H. M. (2013). Low level exposure to the flame retardant bde-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows. Environmental science and technology 47, 10012–10021. 10.1021/es402650x PubMed DOI PMC

Olukole S. G., Ola-Davies E. O., Lanipekun D. O., Oke B. O. (2020). Chronic exposure of adult male wistar rats to bisphenol a causes testicular oxidative stress: Role of gallic acid. Endocrine regulations 54, 14–21. 10.2478/enr-2020-0003 PubMed DOI

Pal A., Gin K. Y.-H., Lin A. Y.-C., Reinhard M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the total environment 408, 6062–6069. 10.1016/j.scitotenv.2010.09.026 PubMed DOI

Pallotti F., Paoli D., Lombardo F. (2022). “Endocrine disruptors and human reproduction,” in Environmental alteration leads to human disease: A planetary health approach 2022 (Cham: Springer International Publishing; ), 261–274.

Pant N., Pant A., Shukla M., Mathur N., Gupta Y., Saxena D. (2011). Environmental and experimental exposure of phthalate esters: The toxicological consequence on human sperm. Human and experimental toxicology 30, 507–514. 10.1177/0960327110374205 PubMed DOI

Park J.-S., Linderholm L., Charles M. J., Athanasiadou M., Petrik J., Kocan A., et al. (2007). Polychlorinated biphenyls and their hydroxylated metabolites (oh-pcbs) in pregnant women from eastern Slovakia. Environmental health perspectives 115, 20–27. 10.1289/ehp.8913 PubMed DOI PMC

Park S. A., Lee M. H., Na H. K., Surh Y. J. (2017). 4-hydroxyestradiol induces mammary epithelial cell transformation through nrf2-mediated heme oxygenase-1 overexpression. Oncotarget 8, 164–178. 10.18632/oncotarget.10516 PubMed DOI PMC

Park S., Chung C. (2021). Effects of a dietary modification intervention on menstrual pain and urinary BPA levels: A single group clinical trial. BMC Women's Health 21, 58–59. 10.1186/s12905-021-01199-3 PubMed DOI PMC

Payne J., Rajapakse N., Wilkins M., Kortenkamp A. (2000). Prediction and assessment of the effects of mixtures of four xenoestrogens. Environ Health Perspect 108, 983–987. 10.1289/ehp.00108983 PubMed DOI PMC

Peiris-John R. J., Wickremasinghe R. (2008). Impact of low-level exposure to organophosphates on human reproduction and survival. Transactions of the Royal Society of Tropical Medicine and Hygiene 102, 239–245. 10.1016/j.trstmh.2007.11.012 PubMed DOI

Perry M. J., Venners S. A., Barr D. B., Xu X. (2007). Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration. Reproductive Toxicology 23, 113–118. 10.1016/j.reprotox.2006.08.005 PubMed DOI

Petersen M. S., Halling J., Weihe P., Jensen T., Grandjean P., Nielsen F., et al. (2015). Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls. Environmental research 138, 345–351. 10.1016/j.envres.2015.02.030 PubMed DOI PMC

Philippat C., Mortamais M., Chevrier C., Petit C., Calafat A. M., Ye X., et al. (2012). Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environmental health perspectives 120, 464–470. 10.1289/ehp.1103634 PubMed DOI PMC

Pi N., Ng J. Z., Kelly B. C. (2017). Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with echinodorus horemanii and eichhornia crassipes. The Science of the total environment 601-602, 812–820. 10.1016/j.scitotenv.2017.05.137 PubMed DOI

Poet T. S., McDougal J. N. (2002). Skin absorption and human risk assessment. Chemico-biological interactions 140, 19–34. 10.1016/s0009-2797(02)00013-3 PubMed DOI

Pradhan A., Olsson P. E., Jass J. (2018). Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of caenorhabditis elegans. Chemosphere 190, 375–382. 10.1016/j.chemosphere.2017.09.123 PubMed DOI

Publicover S., Harper C. V., Barratt C. (2007). [ca2+]i signalling in sperm--making the most of what you've got. Nature Cell biology 9, 235–242. 10.1038/ncb0307-235 PubMed DOI

Raanan R., Harley K. G., Balmes J. R., Bradman A., Lipsett M., Eskenazi B. (2015). Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the chamacos cohort. Environmental health perspectives 123, 179–185. 10.1289/ehp.1408235 PubMed DOI PMC

Rahman Md.S., Kwon W. S., Karmakar P. C., Yoon S. J., Ryu B. Y., Pang M. G. (2017). Gestational exposure to Bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environmental Health Perspectives 125, 238–245. 10.1289/EHP378 PubMed DOI PMC

Rahman M. S., Pang M.-G. (2019). Understanding the molecular mechanisms of bisphenol a action in spermatozoa. Clinical and experimental reproductive medicine 46, 99–106. 10.5653/cerm.2019.00276 PubMed DOI PMC

Raijmakers M. T., Steegers E. A., Peters W. H. (2001). Glutathione s-transferases and thiol concentrations in embryonic and early fetal tissues. Human reproduction (Oxford, England) 16, 2445–2450. 10.1093/humrep/16.11.2445 PubMed DOI

Rajakumar A., Singh R., Chakrabarty S., Murugananthkumar R., Laldinsangi C., Prathibha Y., et al. (2012). Endosulfan and flutamide impair testicular development in the juvenile Asian catfish, clarias batrachus. Aquatic toxicology (Amsterdam, Netherlands) 110-111, 123–132. 10.1016/j.aquatox.2011.12.018 PubMed DOI

Rajapakse N., Silva E., Kortenkamp A. (2002). Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 110, 917–921. 10.1289/ehp.02110917 PubMed DOI PMC

Rider C. V., Furr J. R., Wilson V. S., Gray L. E., Jr (2010). Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common target tissues via diverse mechanisms of toxicity. International journal of andrology 33, 443–462. 10.1111/j.1365-2605.2009.01049.x PubMed DOI PMC

Rochester J. R. (2013). Bisphenol a and human health: A review of the literature. Reproductive toxicology 42, 132–155. 10.1016/j.reprotox.2013.08.008 PubMed DOI

Rudel R. A., Dodson R. E., Perovich L. J., Morello-Frosch R., Camann D. E., Zuniga M. M., et al. (2010). Semivolatile endocrine-disrupting compounds in paired indoor and outdoor air in two northern California communities. Environmental science and technology 44, 6583–6590. 10.1021/es100159c PubMed DOI PMC

Safe S. (2013). Endocrine disruptors and falling sperm counts: Lessons learned or not. Asian journal of andrology 15, 191–194. 10.1038/aja.2012.87 PubMed DOI PMC

Salgueiro-González N., De Alda M. L., Muniategui-Lorenzo S., Prada-Rodríguez D., Barceló D. (2015). Analysis and occurrence of endocrine-disrupting chemicals in airborne particles. TrAC Trends in Analytical Chemistry 66, 45–52. 10.1016/j.trac.2014.11.006 DOI

Sangeetha S., Vimalkumar K., Loganathan B. G. (2021). Environmental contamination and human exposure to select endocrine-disrupting chemicals: A review. Sustainable Chemistry 2, 343–380. 10.3390/suschem2020020 DOI

Senthilkumaran B. (2015). Pesticide- and sex steroid analogue-induced endocrine disruption differentially targets hypothalamo-hypophyseal-gonadal system during gametogenesis in teleosts - a review. General and comparative endocrinology 219, 136–142. 10.1016/j.ygcen.2015.01.010 PubMed DOI

Shah N., Singh V., Yadav H. P., Verma M., Chauhan D. S., Saxena A., et al. (2017). Effect of reduced glutathione supplementation in semen extender on tyrosine phosphorylation and apoptosis like changes in frozen thawed hariana bull spermatozoa. Animal reproduction science 182, 111–122. 10.1016/j.anireprosci.2017.05.006 PubMed DOI

Sharpe R. M., McKinnell C., Kivlin C., Fisher J. S. (2003). Proliferation and functional maturation of sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784. 10.1530/rep.0.1250769 PubMed DOI

Sharpe R. M. (2006). Pathways of endocrine disruption during male sexual differentiation and masculinization. Best practice and research. Clinical endocrinology and metabolism 20, 91–110. 10.1016/j.beem.2005.09.005 PubMed DOI

Shi X., Wu R., Wang X., Huang W., Zheng S., Zhang Q., et al. (2022). Effects of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) on reproductive and endocrine function in female zebrafish (Danio rerio). Ecotoxicology and Environmental Safety 248, 114326. 10.1016/j.ecoenv.2022.114326 PubMed DOI

Sifakis S., Androutsopoulos V. P., Tsatsakis A. M., Spandidos D. A. (2017). Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environ Toxicol Pharmacol 51, 56–70. 10.1016/j.etap.2017.02.024 PubMed DOI

Sifakis S., Mparmpas M., Soldin O. P., Tsatsakis A. (2011). Pesticide exposure and health related issues in male and female reproductive system. IntechOpen.

Skakkebaek N., Rajpert‐De Meyts E., Jørgensen N., Main K. M., Leffers H., Andersson A. M., et al. (2007). Testicular cancer trends as ‘whistle blowers’ of testicular developmental problems in populations. International journal of andrology 30, 198–204. 10.1111/j.1365-2605.2007.00776.x PubMed DOI

Skinner M. K., Manikkam M., Guerrero-Bosagna C. (2011). Epigenetic transgenerational actions of endocrine disruptors. Reproductive toxicology (Elmsford, N.Y.) 31, 337–343. 10.1016/j.reprotox.2010.10.012 PubMed DOI PMC

Skledar D. G., Mašič L. P. (2016). Bisphenol a and its analogs: Do their metabolites have endocrine activity? Environmental toxicology and pharmacology 47, 182–199. 10.1016/j.etap.2016.09.014 PubMed DOI

Sokoloff K., Fraser W., Arbuckle T. E., Fisher M., Gaudreau E., LeBlanc A., et al. (2016). Determinants of urinary concentrations of dialkyl phosphates among pregnant women in Canada—Results from the mirec study. Environment international 94, 133–140. 10.1016/j.envint.2016.05.015 PubMed DOI

Souter I., Smith K. W., Dimitriadis I., Ehrlich S., Williams P. L., Calafat A. M., et al. (2013). The association of bisphenol-a urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reproductive toxicology 42, 224–231. 10.1016/j.reprotox.2013.09.008 PubMed DOI PMC

Srivastava S., Gupta P. (2018). Alteration in apoptotic rate of testicular cells and sperms following administration of bisphenol a (bpa) in wistar albino rats. Environmental Science and Pollution Research 25, 21635–21643. 10.1007/s11356-018-2229-2 PubMed DOI

Stefanidou M., Maravelias C., Spiliopoulou C. (2009). Human exposure to endocrine disruptors and breast milk. Endocrine, Metabolic and Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine and Metabolic Disorders) 9, 269–276. 10.2174/187153009789044374 PubMed DOI

Sugiura-Ogasawara M., Ozaki Y., Sonta S.-i., Makino T., Suzumori K. (2005). Exposure to bisphenol a is associated with recurrent miscarriage. Human reproduction 20, 2325–2329. 10.1093/humrep/deh888 PubMed DOI

Swan S. H., Elkin E. P., Fenster L. (1997). Have sperm densities declined? A reanalysis of global trend data. Environmental health perspectives 105, 1228–1232. 10.1289/ehp.971051228 PubMed DOI PMC

Swan S. H., Elkin E. P., Fenster L. (2000). The question of declining sperm density revisited: An analysis of 101 studies published 1934-1996. Environmental health perspectives 108, 961–966. 10.1289/ehp.00108961 PubMed DOI PMC

Sweeney M., Hasan N., Soto A., Sonnenschein C. (2015). Environmental endocrine disruptors: Effects on the human male reproductive system. Reviews in Endocrine and Metabolic Disorders 16, 341–357. 10.1007/s11154-016-9337-4 PubMed DOI PMC

Syrkasheva A., Frankevich V., Kindysheva S., Starodubtseva N., Donnikov A., Dolgushina N. (2021). The effect of bisphenol A on the IVF outcomes depending on the polymorphism of the detoxification system genes. Journal of Personalized Medicine 11, 1091. 10.3390/jpm11111091 PubMed DOI PMC

Tang W.-Y., Newbold R., Mardilovich K., Jefferson W., Cheng R. Y., Medvedovic M., et al. (2008). Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (nsbp 1) correlates with overexpression of nsbp 1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 149, 5922–5931. 10.1210/en.2008-0682 PubMed DOI PMC

Tchounwou P. B., Yedjou C. G., Patlolla A. K., Sutton D. J. (2012). Heavy metal toxicity and the environment. Experientia supplementum 101, 133–164. 10.1007/978-3-7643-8340-4_6 PubMed DOI PMC

Téteau O., Liere P., Pianos A., Desmarchais A., Lasserre O., Papillier P., et al. (2022). Bisphenol S alters the steroidome in the preovulatory follicle, oviduct fluid and plasma in ewes with contrasted metabolic status. Frontiers in Endocrinology 13, 892213. 10.3389/fendo.2022.892213 PubMed DOI PMC

Thorup J., Cortes D., Petersen B. L. (2006). The incidence of bilateral cryptorchidism is increased and the fertility potential is reduced in sons born to mothers who have smoked during pregnancy. The Journal of urology 176, 734–737. 10.1016/j.juro.2006.03.042 PubMed DOI

Turner B. M. (2009). Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B Biological Sciences 364, 3403–3418. 10.1098/rstb.2009.0125 PubMed DOI PMC

Usmani K. A., Cho T. M., Rose R. L., Hodgson E. (2006). Inhibition of the human liver microsomal and human cytochrome p450 1a2 and 3a4 metabolism of estradiol by deployment-related and other chemicals. Drug metabolism and disposition the biological fate of chemicals 34, 1606–1614. 10.1124/dmd.106.010439 PubMed DOI

Usmani K. A., Rose R. L., Hodgson E. (2003). Inhibition and activation of the human liver microsomal and human cytochrome p450 3a4 metabolism of testosterone by deployment-related chemicals. Drug metabolism and disposition the biological fate of chemicals 31, 384–391. 10.1124/dmd.31.4.384 PubMed DOI

Uzumcu M., Kuhn P. E., Marano J. E., Armenti A. E., Passantino L. (2006). Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-mullerian hormone production in the rat ovary. Journal of endocrinology 191, 549–558. 10.1677/joe.1.06592 PubMed DOI

Wade M. G., Foster W. G., Younglai E. V., McMahon A., Leingartner K., Yagminas A., et al. (2002). Effects of subchronic exposure to a complex mixture of persistent contaminants in male rats: Systemic, immune, and reproductive effects. Toxicological sciences an official journal of the Society of Toxicology 67, 131–143. 10.1093/toxsci/67.1.131 PubMed DOI

Wang W., Craig Z. R., Basavarajappa M. S., Hafner K. S., Flaws J. A. (2012). Mono-(2-ethylhexyl) phthalate induces oxidative stress and inhibits growth of mouse ovarian antral follicles. Biology of reproduction 87 (152), 152–110. 10.1095/biolreprod.112.102467 PubMed DOI PMC

Wang W., Hafner K. S., Flaws J. A. (2014). In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse. Toxicology and applied pharmacology 276, 157–164. 10.1016/j.taap.2014.02.009 PubMed DOI PMC

Waters K. M., Safe S., Gaido K. W. (2001). Differential gene expression in response to methoxychlor and estradiol through eralpha, erbeta, and ar in reproductive tissues of female mice. Toxicological sciences an official journal of the Society of Toxicology 63, 47–56. 10.1093/toxsci/63.1.47 PubMed DOI

Wee S. Y., Aris A. Z. (2017). Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ Int 106, 207–233. 10.1016/j.envint.2017.05.004 PubMed DOI

Welshons W. V., Thayer K. A., Judy B. M., Taylor J. A., Curran E. M., vom Saal F. S. (2003). Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111, 994–1006. 10.1289/ehp.5494 PubMed DOI PMC

Wetherill Y. B., Fisher N. L., Staubach A., Danielsen M., de Vere White R. W., Knudsen K. E. (2005). Xenoestrogen action in prostate cancer: Pleiotropic effects dependent on androgen receptor status. Cancer Res 65, 54–65. 10.1158/0008-5472.54.65.1 PubMed DOI

White S. S., Calafat A. M., Kuklenyik Z., Villanueva L., Zehr R. D., Helfant L., et al. (2007). Gestational PFOA exposure of mice is associated with altered mammary gland development in dams and female offspring. Toxicological Sciences 96, 133–144. 10.1093/toxsci/kfl177 PubMed DOI

Woodrow J. E., Gibson K. A., Seiber J. N. (2019). Pesticides and related toxicants in the atmosphere. Reviews of environmental contamination and toxicology 247, 147–196. 10.1007/398_2018_19 PubMed DOI

World Health Organization (2002). “Exposure of selected potential edcs in humans and wildlife,” in Global assessment of the stateof-the-science of endocrine disruptors.

World Health Organization (2009). Principles and methods for the risk assessment of chemicals in food. World Health Organization.

Xu C., Chen J.-A., Qiu Z., Zhao Q., Luo J., Yang L., et al. (2010). Ovotoxicity and ppar-mediated aromatase downregulation in female sprague–dawley rats following combined oral exposure to benzo [a] pyrene and di-(2-ethylhexyl) phthalate. Toxicology letters 199, 323–332. 10.1016/j.toxlet.2010.09.015 PubMed DOI

Yang M., Park M. S., Lee H. S. (2006). Endocrine disrupting chemicals: Human exposure and health risks. Journal of Environmental Science and Health Part C 24, 183–224. 10.1080/10590500600936474 PubMed DOI

Yang M., Ryu J.-H., Jeon R., Kang D., Yoo K.-Y. (2009). Effects of bisphenol a on breast cancer and its risk factors. Archives of toxicology 83, 281–285. 10.1007/s00204-008-0364-0 PubMed DOI

Yao Y., Wan Y., Shi X., Guo L., Jiang H., Zhang X., et al. (2022). Letrozole protects against cadmium-induced inhibition of spermatogenesis via LHCGR and Hsd3b6 to activate testosterone synthesis in mice. Reproductive Biology and Endocrinology 20, 43. 10.1186/s12958-022-00915-4 PubMed DOI PMC

Yilmaz B., Terekeci H., Sandal S., Kelestimur F. (2020). Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Reviews in endocrine and metabolic disorders 21, 127–147. 10.1007/s11154-019-09521-z PubMed DOI

Ying G. G., Kookana R. S. (2005). Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil. Environmental toxicology and chemistry 24, 2640–2645. 10.1897/05-074r.1 PubMed DOI

Yucra S., Rubio J., Gasco M., Gonzales C., Steenland K., Gonzales G. F. (2006). Semen quality and reproductive sex hormone levels in peruvian pesticide sprayers. International journal of occupational and environmental health 12, 355–361. 10.1179/oeh.2006.12.4.355 PubMed DOI

Yue K., Ye M., Zhou Z., Sun W., Lin X. (2013). The genus cordyceps: A chemical and pharmacological review. Journal of Pharmacy and Pharmacology 65, 474–493. 10.1111/j.2042-7158.2012.01601.x PubMed DOI

Yun Y., Lee S., So C., Manhas R., Kim C., Wibowo T., et al. (2022). Oocyte development and quality in young and old mice following exposure to atrazine. Environmental Health Perspectives 130, 117007. 10.1289/EHP11343 PubMed DOI PMC

Zachow R., Uzumcu M. (2006). The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro . Reproductive toxicology (Elmsford, N.Y.) 22, 659–665. 10.1016/j.reprotox.2006.04.018 PubMed DOI

Zama A. M., Uzumcu M. (2010). Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Frontiers in neuroendocrinology 31, 420–439. 10.1016/j.yfrne.2010.06.003 PubMed DOI PMC

Zama A. M., Uzumcu M. (2009). Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology 150, 4681–4691. 10.1210/en.2009-0499 PubMed DOI PMC

Zhang C., Wang S., Wang Z., Zhang Q., Chen R., Zhang H., et al. (2022). Repair mechanism of Wuwei Fuzheng Yijing formula in di-2-ethylhexyl phthalate-induced sperm DNA fragmentation in mice. Pharmaceutical Biology 60, 1286–1302. 10.1080/13880209.2022.2089694 PubMed DOI PMC

Zhang P., Zhao Y., Zhang H., Liu J., Feng Y., Yin S., et al. (2019). Low dose chlorothalonil impairs mouse spermatogenesis through the intertwining of Estrogen receptor pathways with histone and DNA methylation. Chemosphere 230, 384–395. 10.1016/j.chemosphere.2019.05.029 PubMed DOI

Zhang S., Sun B., Wang D., Liu Y., Li J., Qi J., et al. (2021). Chlorogenic acid ameliorates damage induced by fluorene-9-bisphenol in porcine sertoli cells. Frontiers in Pharmacology 12, 678772. 10.3389/fphar.2021.678772 PubMed DOI PMC

Zhang Y., Han S., Liang D., Shi X., Wang F., Liu W., et al. (2014). Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: A birth cohort study in shenyang, China. PloS one 9, e88491. 10.1371/journal.pone.0088491 PubMed DOI PMC

Zhang Y., Lu Y., Ma H., Xu Q., Wu X. (2021). Combined exposure to multiple endocrine disruptors and uterine leiomyomata and endometriosis in US women. Frontiers in Endocrinology 12, 726876. 10.3389/fendo.2021.726876 PubMed DOI PMC

Zhang Z., Sun L., Hu Y., Jiao J., Hu J. (2013). Inverse antagonist activities of parabens on human oestrogen-related receptor γ (errγ): In vitro and in silico studies. Toxicol Appl Pharmacol 270, 16–22. 10.1016/j.taap.2013.03.030 PubMed DOI

Zhou C., Gao L., Flaws J. A. (2017). Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in f1 female mice. Toxicology and applied pharmacology 318, 49–57. 10.1016/j.taap.2017.01.010 PubMed DOI PMC

Zhu W., Xie C., Zhao S., Zhang D., Zhang H. (2022). Environmental exposure to triclosan and male fecundity: A prospective study in China. Frontiers in Public Health 10, 814927. 10.3389/fpubh.2022.814927 PubMed DOI PMC

Zou X., Lin Z., Deng Z., Yin D. (2013). Novel approach to predicting hormetic effects of antibiotic mixtures on vibrio fischeri. Chemosphere 90, 2070–2076. 10.1016/j.chemosphere.2012.09.042 PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Environmental and Genetic Traffic in the Journey from Sperm to Offspring

. 2023 Dec 07 ; 13 (12) : . [epub] 20231207

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...