Terahertz charge transport dynamics in 3D graphene networks with localization and band regimes
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
37260493
PubMed Central
PMC10228342
DOI
10.1039/d2na00844k
PII: d2na00844k
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Terahertz steady-state and time-resolved conductivity and permittivity spectra were measured in 3D graphene networks assembled in free-standing covalently cross-linked graphene aerogels. Investigation of a transition between reduced-graphene oxide and graphene controlled by means of high-temperature annealing allowed us to elucidate the role of defects in the charge carrier transport in the materials. The THz spectra reveal increasing conductivity and decreasing permittivity with frequency. This contrasts with the Drude- or Lorentz-like conductivity typically observed in various 2D graphene samples, suggesting a significant contribution of a relaxational mechanism to the conductivity in 3D graphene percolated networks. The charge transport in the graphene aerogels exhibits an interplay between the carrier hopping among localized states and a Drude contribution of conduction-band carriers. Upon photoexcitation, carriers are injected into the conduction band and their dynamics reveals picosecond lifetime and femtosecond dephasing time. Our findings provide important insight into the charge transport in complex graphene structures.
See more in PubMed
Novoselov K. S. et al . Science. 2016;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Wang L. Meric I. Huang P. Y. Gao Q. Gao Y. Tran H. Taniguchi T. Watanabe K. Campos L. M. Muller D. A. Guo J. Kim P. Hone J. Shepard K. L. Dean C. R. Science. 2013;342:614–617. doi: 10.1126/science.1244358. PubMed DOI
Ferrari A. C. Bonaccorso F. Fal’ko V. Novoselov K. S. Roche S. Bøggild P. Borini S. Koppens F. H. L. Palermo V. Pugno N. Garrido J. A. Sordan R. Bianco A. Ballerini L. Prato M. Lidorikis E. Kivioja J. Marinelli C. Ryhänen T. Morpurgo A. Coleman J. N. Nicolosi V. Colombo L. Fert A. Garcia-Hernandez M. Bachtold A. Schneider G. F. Guinea F. Dekker C. Barbone M. Sun Z. Galiotis C. Grigorenko A. N. Konstantatos G. Kis A. Katsnelson M. Vandersypen L. Loiseau A. Morandi V. Neumaier D. Treossi E. Pellegrini V. Polini M. Tredicucci A. Williams G. M. Hee Hong B. Ahn J.-H. Min Kim J. Zirath H. van Wees B. J. van der Zant H. Occhipinti L. Di Matteo A. Kinloch I. A. Seyller T. Quesnel E. Feng X. Teo K. Rupesinghe N. Hakonen P. Neil S. R. T. Tannock Q. Löfwander T. Kinaret J. Nanoscale. 2015;7:4598–4810. doi: 10.1039/C4NR01600A. PubMed DOI
Bonaccorso F. Sun Z. Hasan T. Ferrari A. C. Nat. Photonics. 2010;4:611–622. doi: 10.1038/nphoton.2010.186. DOI
Hafez H. A. Kovalev S. Deinert J.-C. Mics Z. Green B. Awari N. Chen M. Germanskiy S. Lehnert U. Teichert J. Wang Z. Tielrooij K.-J. Liu Z. Chen Z. Narita A. Müllen K. Bonn M. Gensch M. Turchinovich D. Nature. 2018;561:507–511. doi: 10.1038/s41586-018-0508-1. PubMed DOI
Kar S. Mohapatra D. R. Sood A. K. Nanoscale. 2018;10:14321–14330. doi: 10.1039/C8NR04154G. PubMed DOI
Lin Y.-M. Dimitrakopoulos C. Jenkins K. A. Farmer D. B. Chiu H.-Y. Grill A. Avouris P. Science. 2010;327:662. doi: 10.1126/science.1184289. PubMed DOI
Liu C. Wang L. Chen X. Politano A. Wei D. Chen G. Tang W. Lu W. Tredicucci A. Adv. Opt. Mater. 2018;6:1800836. doi: 10.1002/adom.201800836. DOI
Guo N. Hu W. Jiang T. Gong F. Luo W. Qiu W. Wang P. Liu L. Wu S. Liao L. Chen X. Lu W. Nanoscale. 2016;8:16065–16072. doi: 10.1039/C6NR04607J. PubMed DOI
Huang Y. Zhong S. Shen Y. Yu Y. Cui D. Nanoscale. 2018;10:22466–22473. doi: 10.1039/C8NR08672A. PubMed DOI
Kovalev S. Hafez H. A. Tielrooij K.-J. Deinert J.-C. Ilyakov I. Awari N. Alcaraz D. Soundarapandian K. Saleta D. Germanskiy S. Chen M. Bawatna M. Green B. Koppens F. H. L. Mittendorff M. Bonn M. Gensch M. Turchinovich D. Sci. Adv. 2021;7:eabf9809. doi: 10.1126/sciadv.abf9809. PubMed DOI PMC
Zhang H. Miyamoto Y. Cheng X. Rubio A. Nanoscale. 2015;7:19012–19017. doi: 10.1039/C5NR05889A. PubMed DOI
Nair R. R. Blake P. Grigorenko A. N. Novoselov K. S. Booth T. J. Stauber T. Peres N. M. R. Geim A. K. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI
Lee C. Kim J. Y. Bae S. Kim K. S. Hong B. H. Choi E. J. Appl. Phys. Lett. 2011;98:071905. doi: 10.1063/1.3555425. DOI
Horng J. Chen C.-F. Geng B. Girit C. Zhang Y. Hao Z. Bechtel H. A. Martin M. Zettl A. Crommie M. F. Shen Y. R. Wang F. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;83:165113. doi: 10.1103/PhysRevB.83.165113. DOI
Kužel P. Němec H. Adv. Opt. Mater. 2020;8:1900623. doi: 10.1002/adom.201900623. DOI
Crassee I. Orlita M. Potemski M. Walter A. L. Ostler M. Seyller T. Gaponenko I. Chen J. Kuzmenko A. B. Nano Lett. 2012;12:2470–2474. doi: 10.1021/nl300572y. PubMed DOI
Paingad V. C. Kunc J. Rejhon M. Rychetský I. Mohelský I. Orlita M. Kužel P. Adv. Funct. Mater. 2021;31:2105763. doi: 10.1002/adfm.202105763. DOI
Zhou Y., Xu X., Fan H., Qi M., Li J., Bai J. and Ren Z., in Graphene Optoelectronics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014, pp. 209–234
Lin I.-T. Liu J.-M. Shi K.-Y. Tseng P.-S. Wu K.-H. Luo C.-W. Li L.-J. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:235446. doi: 10.1103/PhysRevB.86.235446. DOI
Baek I. H. Ahn K. J. Kang B. J. Bae S. Hong B. H. Yeom D.-I. Lee K. Jeong Y. U. Rotermund F. Appl. Phys. Lett. 2013;102:191109. doi: 10.1063/1.4805074. DOI
Zou X. Shang J. Leaw J. Luo Z. Luo L. La-o-vorakiat C. Cheng L. Cheong S. A. Su H. Zhu J.-X. Liu Y. Loh K. P. Castro Neto A. H. Yu T. Chia E. E. M. Phys. Rev. Lett. 2013;110:067401. doi: 10.1103/PhysRevLett.110.067401. PubMed DOI
Tomarchio L. Macis S. D'Arco A. Mou S. Grilli A. Romani M. Guidi M. C. Hu K. Kukunuri S. Jeong S. Marcelli A. Ito Y. Lupi S. NPG Asia Mater. 2021;13:73. doi: 10.1038/s41427-021-00341-9. DOI
D'Apuzzo F. Piacenti A. R. Giorgianni F. Autore M. Guidi M. C. Marcelli A. Schade U. Ito Y. Chen M. Lupi S. Nat. Commun. 2017;8:14885. doi: 10.1038/ncomms14885. PubMed DOI PMC
Šilhavík M. Kumar P. Zafar Z. A. Míšek M. Čičala M. Piliarik M. Červenka J. Commun. Phys. 2022;5:27. doi: 10.1038/s42005-022-00806-5. DOI
Kumar P. Šilhavík M. Zafar Z. A. Červenka J. Nanoscale. 2022;14:1440–1451. doi: 10.1039/D1NR06893H. PubMed DOI
Luo S. Samad Y. A. Chan V. Liao K. Matter. 2019;1:1148–1202. doi: 10.1016/j.matt.2019.10.001. DOI
Massicotte M. Soavi G. Principi A. Tielrooij K.-J. Nanoscale. 2021;13:8376–8411. doi: 10.1039/D0NR09166A. PubMed DOI PMC
Kužel P. Němec H. Kadlec F. Kadlec C. Opt. Express. 2010;18:15338. doi: 10.1364/OE.18.015338. PubMed DOI
Duvillaret L. Garet F. Coutaz J.-L. Appl. Opt. 1999;38:409. doi: 10.1364/AO.38.000409. PubMed DOI
Kužel P. Němec H. J. Phys. D: Appl. Phys. 2014;47:374005. doi: 10.1088/0022-3727/47/37/374005. DOI
Cançado L. G. Takai K. Enoki T. Endo M. Kim Y. A. Mizusaki H. Jorio A. Coelho L. N. Magalhães-Paniago R. Pimenta M. A. Appl. Phys. Lett. 2006;88:163106. doi: 10.1063/1.2196057. DOI
Cançado L. G. Jorio A. Ferreira E. H. M. Stavale F. Achete C. A. Capaz R. B. Moutinho M. V. O. Lombardo A. Kulmala T. S. Ferrari A. C. Nano Lett. 2011;11:3190–3196. doi: 10.1021/nl201432g. PubMed DOI
Acik M. Lee G. Mattevi C. Chhowalla M. Cho K. Chabal Y. J. Nat. Mater. 2010;9:840–845. doi: 10.1038/nmat2858. PubMed DOI
Pei S. Cheng H.-M. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI
Becerril H. A. Mao J. Liu Z. Stoltenberg R. M. Bao Z. Chen Y. ACS Nano. 2008;2:463–470. doi: 10.1021/nn700375n. PubMed DOI
Worsley M. A. Pham T. T. Yan A. Shin S. J. Lee J. R. I. Bagge-Hansen M. Mickelson W. Zettl A. ACS Nano. 2014;8:11013–11022. doi: 10.1021/nn505335u. PubMed DOI
Hafez H. A. Kovalev S. Tielrooij K. Bonn M. Gensch M. Turchinovich D. Adv. Opt. Mater. 2020;8:1900771. doi: 10.1002/adom.201900771. DOI
Jnawali G. Rao Y. Yan H. Heinz T. F. Nano Lett. 2013;13:524–530. doi: 10.1021/nl303988q. PubMed DOI
Choi W. Nishiyama H. Ogawa Y. Ueno Y. Furukawa K. Takeuchi T. Tsutsui Y. Sakurai T. Seki S. Adv. Opt. Mater. 2018;6:1701402. doi: 10.1002/adom.201701402. DOI
Němec H. Kužel P. Sundström V. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:115309. doi: 10.1103/PhysRevB.79.115309. DOI
Fekete L. Kužel P. Němec H. Kadlec F. Dejneka A. Stuchlík J. Fejfar A. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:115306. doi: 10.1103/PhysRevB.79.115306. DOI
Dyre J. C. J. Appl. Phys. 1988;64:2456–2468. doi: 10.1063/1.341681. DOI
Němec H. Kadlec F. Kadlec C. Kužel P. Jungwirth P. J. Chem. Phys. 2005;122:104504. doi: 10.1063/1.1857871. PubMed DOI
Kitipornchai S. He X. Q. Liew K. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;72:075443. doi: 10.1103/PhysRevB.72.075443. DOI
Bae S. Kim H. Lee Y. Xu X. Park J.-S. Zheng Y. Balakrishnan J. Lei T. Ri Kim H. Il Song Y. Kim Y.-J. Kim K. S. Özyilmaz B. Ahn J.-H. Hong B. H. Iijima S. Nat. Nanotechnol. 2010;5:574–578. doi: 10.1038/nnano.2010.132. PubMed DOI