• This record comes from PubMed

Terahertz charge transport dynamics in 3D graphene networks with localization and band regimes

. 2023 May 30 ; 5 (11) : 2933-2940. [epub] 20230502

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Terahertz steady-state and time-resolved conductivity and permittivity spectra were measured in 3D graphene networks assembled in free-standing covalently cross-linked graphene aerogels. Investigation of a transition between reduced-graphene oxide and graphene controlled by means of high-temperature annealing allowed us to elucidate the role of defects in the charge carrier transport in the materials. The THz spectra reveal increasing conductivity and decreasing permittivity with frequency. This contrasts with the Drude- or Lorentz-like conductivity typically observed in various 2D graphene samples, suggesting a significant contribution of a relaxational mechanism to the conductivity in 3D graphene percolated networks. The charge transport in the graphene aerogels exhibits an interplay between the carrier hopping among localized states and a Drude contribution of conduction-band carriers. Upon photoexcitation, carriers are injected into the conduction band and their dynamics reveals picosecond lifetime and femtosecond dephasing time. Our findings provide important insight into the charge transport in complex graphene structures.

See more in PubMed

Novoselov K. S. et al . Science. 2016;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Wang L. Meric I. Huang P. Y. Gao Q. Gao Y. Tran H. Taniguchi T. Watanabe K. Campos L. M. Muller D. A. Guo J. Kim P. Hone J. Shepard K. L. Dean C. R. Science. 2013;342:614–617. doi: 10.1126/science.1244358. PubMed DOI

Ferrari A. C. Bonaccorso F. Fal’ko V. Novoselov K. S. Roche S. Bøggild P. Borini S. Koppens F. H. L. Palermo V. Pugno N. Garrido J. A. Sordan R. Bianco A. Ballerini L. Prato M. Lidorikis E. Kivioja J. Marinelli C. Ryhänen T. Morpurgo A. Coleman J. N. Nicolosi V. Colombo L. Fert A. Garcia-Hernandez M. Bachtold A. Schneider G. F. Guinea F. Dekker C. Barbone M. Sun Z. Galiotis C. Grigorenko A. N. Konstantatos G. Kis A. Katsnelson M. Vandersypen L. Loiseau A. Morandi V. Neumaier D. Treossi E. Pellegrini V. Polini M. Tredicucci A. Williams G. M. Hee Hong B. Ahn J.-H. Min Kim J. Zirath H. van Wees B. J. van der Zant H. Occhipinti L. Di Matteo A. Kinloch I. A. Seyller T. Quesnel E. Feng X. Teo K. Rupesinghe N. Hakonen P. Neil S. R. T. Tannock Q. Löfwander T. Kinaret J. Nanoscale. 2015;7:4598–4810. doi: 10.1039/C4NR01600A. PubMed DOI

Bonaccorso F. Sun Z. Hasan T. Ferrari A. C. Nat. Photonics. 2010;4:611–622. doi: 10.1038/nphoton.2010.186. DOI

Hafez H. A. Kovalev S. Deinert J.-C. Mics Z. Green B. Awari N. Chen M. Germanskiy S. Lehnert U. Teichert J. Wang Z. Tielrooij K.-J. Liu Z. Chen Z. Narita A. Müllen K. Bonn M. Gensch M. Turchinovich D. Nature. 2018;561:507–511. doi: 10.1038/s41586-018-0508-1. PubMed DOI

Kar S. Mohapatra D. R. Sood A. K. Nanoscale. 2018;10:14321–14330. doi: 10.1039/C8NR04154G. PubMed DOI

Lin Y.-M. Dimitrakopoulos C. Jenkins K. A. Farmer D. B. Chiu H.-Y. Grill A. Avouris P. Science. 2010;327:662. doi: 10.1126/science.1184289. PubMed DOI

Liu C. Wang L. Chen X. Politano A. Wei D. Chen G. Tang W. Lu W. Tredicucci A. Adv. Opt. Mater. 2018;6:1800836. doi: 10.1002/adom.201800836. DOI

Guo N. Hu W. Jiang T. Gong F. Luo W. Qiu W. Wang P. Liu L. Wu S. Liao L. Chen X. Lu W. Nanoscale. 2016;8:16065–16072. doi: 10.1039/C6NR04607J. PubMed DOI

Huang Y. Zhong S. Shen Y. Yu Y. Cui D. Nanoscale. 2018;10:22466–22473. doi: 10.1039/C8NR08672A. PubMed DOI

Kovalev S. Hafez H. A. Tielrooij K.-J. Deinert J.-C. Ilyakov I. Awari N. Alcaraz D. Soundarapandian K. Saleta D. Germanskiy S. Chen M. Bawatna M. Green B. Koppens F. H. L. Mittendorff M. Bonn M. Gensch M. Turchinovich D. Sci. Adv. 2021;7:eabf9809. doi: 10.1126/sciadv.abf9809. PubMed DOI PMC

Zhang H. Miyamoto Y. Cheng X. Rubio A. Nanoscale. 2015;7:19012–19017. doi: 10.1039/C5NR05889A. PubMed DOI

Nair R. R. Blake P. Grigorenko A. N. Novoselov K. S. Booth T. J. Stauber T. Peres N. M. R. Geim A. K. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI

Lee C. Kim J. Y. Bae S. Kim K. S. Hong B. H. Choi E. J. Appl. Phys. Lett. 2011;98:071905. doi: 10.1063/1.3555425. DOI

Horng J. Chen C.-F. Geng B. Girit C. Zhang Y. Hao Z. Bechtel H. A. Martin M. Zettl A. Crommie M. F. Shen Y. R. Wang F. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;83:165113. doi: 10.1103/PhysRevB.83.165113. DOI

Kužel P. Němec H. Adv. Opt. Mater. 2020;8:1900623. doi: 10.1002/adom.201900623. DOI

Crassee I. Orlita M. Potemski M. Walter A. L. Ostler M. Seyller T. Gaponenko I. Chen J. Kuzmenko A. B. Nano Lett. 2012;12:2470–2474. doi: 10.1021/nl300572y. PubMed DOI

Paingad V. C. Kunc J. Rejhon M. Rychetský I. Mohelský I. Orlita M. Kužel P. Adv. Funct. Mater. 2021;31:2105763. doi: 10.1002/adfm.202105763. DOI

Zhou Y., Xu X., Fan H., Qi M., Li J., Bai J. and Ren Z., in Graphene Optoelectronics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014, pp. 209–234

Lin I.-T. Liu J.-M. Shi K.-Y. Tseng P.-S. Wu K.-H. Luo C.-W. Li L.-J. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:235446. doi: 10.1103/PhysRevB.86.235446. DOI

Baek I. H. Ahn K. J. Kang B. J. Bae S. Hong B. H. Yeom D.-I. Lee K. Jeong Y. U. Rotermund F. Appl. Phys. Lett. 2013;102:191109. doi: 10.1063/1.4805074. DOI

Zou X. Shang J. Leaw J. Luo Z. Luo L. La-o-vorakiat C. Cheng L. Cheong S. A. Su H. Zhu J.-X. Liu Y. Loh K. P. Castro Neto A. H. Yu T. Chia E. E. M. Phys. Rev. Lett. 2013;110:067401. doi: 10.1103/PhysRevLett.110.067401. PubMed DOI

Tomarchio L. Macis S. D'Arco A. Mou S. Grilli A. Romani M. Guidi M. C. Hu K. Kukunuri S. Jeong S. Marcelli A. Ito Y. Lupi S. NPG Asia Mater. 2021;13:73. doi: 10.1038/s41427-021-00341-9. DOI

D'Apuzzo F. Piacenti A. R. Giorgianni F. Autore M. Guidi M. C. Marcelli A. Schade U. Ito Y. Chen M. Lupi S. Nat. Commun. 2017;8:14885. doi: 10.1038/ncomms14885. PubMed DOI PMC

Šilhavík M. Kumar P. Zafar Z. A. Míšek M. Čičala M. Piliarik M. Červenka J. Commun. Phys. 2022;5:27. doi: 10.1038/s42005-022-00806-5. DOI

Kumar P. Šilhavík M. Zafar Z. A. Červenka J. Nanoscale. 2022;14:1440–1451. doi: 10.1039/D1NR06893H. PubMed DOI

Luo S. Samad Y. A. Chan V. Liao K. Matter. 2019;1:1148–1202. doi: 10.1016/j.matt.2019.10.001. DOI

Massicotte M. Soavi G. Principi A. Tielrooij K.-J. Nanoscale. 2021;13:8376–8411. doi: 10.1039/D0NR09166A. PubMed DOI PMC

Kužel P. Němec H. Kadlec F. Kadlec C. Opt. Express. 2010;18:15338. doi: 10.1364/OE.18.015338. PubMed DOI

Duvillaret L. Garet F. Coutaz J.-L. Appl. Opt. 1999;38:409. doi: 10.1364/AO.38.000409. PubMed DOI

Kužel P. Němec H. J. Phys. D: Appl. Phys. 2014;47:374005. doi: 10.1088/0022-3727/47/37/374005. DOI

Cançado L. G. Takai K. Enoki T. Endo M. Kim Y. A. Mizusaki H. Jorio A. Coelho L. N. Magalhães-Paniago R. Pimenta M. A. Appl. Phys. Lett. 2006;88:163106. doi: 10.1063/1.2196057. DOI

Cançado L. G. Jorio A. Ferreira E. H. M. Stavale F. Achete C. A. Capaz R. B. Moutinho M. V. O. Lombardo A. Kulmala T. S. Ferrari A. C. Nano Lett. 2011;11:3190–3196. doi: 10.1021/nl201432g. PubMed DOI

Acik M. Lee G. Mattevi C. Chhowalla M. Cho K. Chabal Y. J. Nat. Mater. 2010;9:840–845. doi: 10.1038/nmat2858. PubMed DOI

Pei S. Cheng H.-M. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI

Becerril H. A. Mao J. Liu Z. Stoltenberg R. M. Bao Z. Chen Y. ACS Nano. 2008;2:463–470. doi: 10.1021/nn700375n. PubMed DOI

Worsley M. A. Pham T. T. Yan A. Shin S. J. Lee J. R. I. Bagge-Hansen M. Mickelson W. Zettl A. ACS Nano. 2014;8:11013–11022. doi: 10.1021/nn505335u. PubMed DOI

Hafez H. A. Kovalev S. Tielrooij K. Bonn M. Gensch M. Turchinovich D. Adv. Opt. Mater. 2020;8:1900771. doi: 10.1002/adom.201900771. DOI

Jnawali G. Rao Y. Yan H. Heinz T. F. Nano Lett. 2013;13:524–530. doi: 10.1021/nl303988q. PubMed DOI

Choi W. Nishiyama H. Ogawa Y. Ueno Y. Furukawa K. Takeuchi T. Tsutsui Y. Sakurai T. Seki S. Adv. Opt. Mater. 2018;6:1701402. doi: 10.1002/adom.201701402. DOI

Němec H. Kužel P. Sundström V. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:115309. doi: 10.1103/PhysRevB.79.115309. DOI

Fekete L. Kužel P. Němec H. Kadlec F. Dejneka A. Stuchlík J. Fejfar A. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:115306. doi: 10.1103/PhysRevB.79.115306. DOI

Dyre J. C. J. Appl. Phys. 1988;64:2456–2468. doi: 10.1063/1.341681. DOI

Němec H. Kadlec F. Kadlec C. Kužel P. Jungwirth P. J. Chem. Phys. 2005;122:104504. doi: 10.1063/1.1857871. PubMed DOI

Kitipornchai S. He X. Q. Liew K. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;72:075443. doi: 10.1103/PhysRevB.72.075443. DOI

Bae S. Kim H. Lee Y. Xu X. Park J.-S. Zheng Y. Balakrishnan J. Lei T. Ri Kim H. Il Song Y. Kim Y.-J. Kim K. S. Özyilmaz B. Ahn J.-H. Hong B. H. Iijima S. Nat. Nanotechnol. 2010;5:574–578. doi: 10.1038/nnano.2010.132. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...