Seals, fish, humans and parasites in the Baltic: ecology, evolution and history
Language English Country Czech Republic Media electronic
Document type Journal Article
PubMed
37265200
DOI
10.14411/fp.2023.011
PII: 2023.011
Knihovny.cz E-resources
- Keywords
- Baltic Sea, Contracaecum, Gadus morhua, Pseudoterranova, fish stocks, zoonosis,
- MeSH
- Ascaridoidea * physiology MeSH
- Ecosystem MeSH
- Gadus morhua * parasitology MeSH
- Larva physiology MeSH
- Humans MeSH
- Fish Diseases * epidemiology parasitology MeSH
- Parasites * MeSH
- Fishes MeSH
- Seals, Earless * parasitology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Evolutionary and ecological processes affecting the interactions between hosts and parasites in the aquatic environment are at display in the Baltic Sea, a young and ecologically unstable marine ecosystem, where fluctuating abiotic and biotic factors affect the parasitofauna in fish. The dynamic infections of Baltic cod, a subpopulation of the Atlantic cod (Gadus morhua Linnaeus), with third stage anisakid nematode larvae of Pseudoterranova decipiens (Krabbe, 1878) and Contracaecum osculatum (Rudolphi, 1802) have increased following a significant increase of the Baltic grey seal Halichoerus grypus (Fabricius) population in the region. Cod serves as a paratenic host and marine mammals, pinnipeds, are definitive hosts releasing parasite eggs, with faeces, to the marine environment, where embryonation and hatching of the third stage larva take place. The parasite has no obligate intermediate hosts, but various invertebrates, smaller fish and cod act as paratenic hosts transmitting the infection to the seal. Contracaecum osculatum has an impact on the physiological performance of the cod, which optimises transmission of the larva from fish to seal. Thus, a muscle mass decrease of nearly 50% may result from heavy C. osculatum infections, probably amplified by a restricted food availability. The muscle atrophy is likely to reduce the escape reactions of the fish when meeting a foraging seal. In certain regions, where fish and seals are restricted in their migration patterns, such as the semi-enclosed Baltic Sea, the predation may contribute to a severe cod stock depletion. The parasites are zoonotic and represent a human health risk, when consumers ingest insufficiently heat- or freeze-treated infected products. Marked infections of the cod were previously reported during periods with elevated seal populations (late 19th and middle 20th century) and various scenarios for management of risk factors are evaluated in an evolutionary context.
See more in PubMed
Ahlgren H., Bro-Jørgensen M.H., Glykou A., Schmölcke U., Angerbjörn A., Olsen M.T., Lidén K. 2022: The Baltic grey seal: a 9000-year history of presence and absence. Holocene 32: 569-577. DOI
Amin O.M., Eidelman W.S., Domke W., Bailey J., Pfeifer G. 2000: An unusual case of anisakiasis in California, USA. Comp. Parasitol. 67: 71-75.
Arizono N., Miura T., Yamada M., Tegoshi T., Onishi K. 2011: Human infection with Pseudoterranova azarasi roundworm. Emerg. Infect. Dis. 17: 555-556. PubMed DOI
Aspholm P.E., Ugland K.I., Jodestol K.A., Berland B. 1995: Seal worm (Pseudoterranova decipiens) infection in common seals (Phoca vitulina) and potential intermediate fish hosts from the outer Oslo Fjord. Int. J. Parasitol. 25: 367-373. PubMed DOI
Behrens J., Andersen N.G., Buchmann K., Galatius A., Hansen J.H., Huwer B., Kania P., Kroner A.-M., Krumme U., Lundström K., Tange Olsen M., Ryberg M.P., Skov P.V., Sokolova M., Kindt-Larsen L. 2018: The potential direct and indirect effects of grey seal on Baltic cod. Presentation at Conference EUfishmeal, 11 October 2018, Copenhagen, Denmark.
Berglund B.E., Sandgren P., Barnekow L., Hannon B., Jiang H., Skog G., Yu S. 2005: Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quart. Int. 130: 111-139. DOI
Blaxter M., Koutsovoulos G. 2015: The evolution of parasitism in Nematoda. Parasitology 142: S26-S39. PubMed DOI
Brunet J., Pesson B., Royant M., Lemoine J.P., Pfaff A.W., Abou-Bacar A., Yera H., Frealle E., Dupouy-Camet J., Merino-Espinosa G., Gomez-Mateos M., Martin-Sanchez J., Candofi E. 2017: Molecular diagnosis of Pseudoterranova decipiens s. s. in human in France. BMC Infect. Dis. 17: 397-401. PubMed DOI
Buchmann K. 1986: On the infection of Baltic cod (Gadus morhua L.) by the acanthocephalan Echinorhynchus gadi (Zoega) Müller. Nord. Vet. Med. 38: 308-314.
Buchmann K. 2012: Fish immune responses against endoparasitic nematodes - experimental models. J. Fish Dis. 35: 623-635. PubMed DOI
Buchmann K., Kania P.W. 2012: Emerging Pseudoterranova decipiens (Krabbe, 1878) problems in Baltic cod, Gadus morhua L., associated with grey seal colonization of spawning grounds. J. Fish Dis. 35: 861-866. PubMed DOI
Casini M., Kall F., Hansson M., Plikshs M., Baranova T., Karlsson O., Lundstrom K., Neuenfeldt S., Gardmark A., Hjelm J. 2016: Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator. R. Soc. Open Sci. 3: 160416. PubMed DOI
Cavallero S., Scribano D., D'Amelio S. 2016: First case of invasive pseudoterranoviasis in Italy. Parasitol. Int. 65: 488-490. PubMed DOI
Chitwood M. 1975: Phocanema-type larval nematode coughed up by a boy in California. Am. J. Trop. Med. Hyg. 24: 710-711. PubMed DOI
Dupouy-Camet J., Gay M., Bourgau O., Nouchi A., Leger E., Dei-Cas E. 2014: Oesophageal localization: a rare complication of anisakidosis due to Pseudoterranova. Presse Med. 43: 81-92. PubMed DOI
Eero M., Hjelm J., Behrens J., Buchmann K., Cardinale M., Casini M., Gasyukov P., Holmgren N., Horbowy J., Hüssy K., Kirkegaard E., Kornilovs G., Krumme U., Köster F., Oeberst R., Plikss M., Radtke K., Raid T., Schmidt J.O., Tomczak M., Vinther M., Zimmermann C., Storr-Paulsen M. 2015: Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES J. Mar. Sci. 72: 2180-2186. DOI
Fagerholm H.P. 1982: Parasites of fish in Finland. VI. Nematodes. Acta Acad. Åbo, Ser. B 40: 5-128.
Fagerholm H.P. 1989: Intra-specific variability of the morphology in a single population of the seal parasite Contracaecum osculatum (Rudolphi) (Nematoda, Ascaridoidea), with a redescription of the species. Zool. Scri. 18: 33-41. DOI
Gay M., Bao M., MacKenzie K., Pascual S., Buchmann K., Bourgau O., Couvreur C., Mattiucci S., Paoletti M., Hastie L.C., Levsen A., Pierce G.J. 2018: Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size. Fish. Res. 202: 90-102. DOI
Getsevitjute S. 1955: [Seasonal parasitic infection of Baltic cod liver.] Trud. Akad. Nauk. Lit. SSR, Ser. B 2: 127-129. (In Russian.)
Grabda J. 1976: The occurrence of anisakid nematode larvae in Baltic cod (Gadus morhua callarias L.) and the dynamics of their invasion. Acta Ichthyol. Pisc. 6: 3-22. DOI
Haarder S., Kania P.W., Galatius A., Buchmann K. 2014: Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982-2012) associated with increasing grey seal (Halichoerus gryphus) populations. J. Wildl. Dis. 50: 537-543. PubMed DOI
Hafsteinsson H., Rizvi S.S.H. 1987: A review of the sealworm problem: biology, implications and solutions. J. Food Protect. 50: 70-84. PubMed DOI
Harding K.C., Härkönen T., Helander B., Karlsson O. 2007: Status of Baltic grey seals: population assessment and extinction risk. NAMMCO Sci. Publ. 6: 33-56. DOI
Hauksson E. 2002: Decreases in sealworm (Pseudoterranova sp.) abundance in short-spined sea scorpion (Myoxocephalus scorpius) following declines in numbers of seals at Hvalseyjar, western Iceland. Pol. Biol. 25: 531-537. DOI
Hemmer-Hansen J., Hüssy K., Baktoft H., Huwer B., Bekkevold D., Haslob H., Herrmann J. P. 2019: Genetic analyses reveal complex dynamics within a marine fish management area. Evol. Appl. 12: 830-844. PubMed DOI
Hemmingsen W., MacKenzie K. 2001: The parasitofauna of Atlantic cod (Gadus morhua L.). Adv. Mar. Biol. 40: 1-80. DOI
Heuch P.A., Jansen P.A., Hansen H., Sterud E., MacKenzie K., Haugen P., Hemmingsen W. 2011: Parasite faunas of farmed cod and adjacent wild cod populations in Norway: a comparison. Aquacult. Env. Interact. 2: 1-13. DOI
Hinrichsen H.-H., Huwer B., Makarchouk A., Petereit C., Schaber M.,Voss R. 2011: Climate-driven long-term trends in Baltic Sea oxygen concentrations and the potential consequences for eastern Baltic cod (Gadus morhua). ICES J. Mar. Sci. 68: 2019-2028. DOI
Horbowy J., Podolska M., Nadolna-Ałtyn K. 2016: Increasing occurrence of anisakid nematodes in the liver of cod (Gadus morhua) from the Baltic Sea: does infection affect the condition and mortality of fish? Fish. Res. 179: 98-103. DOI
Ishikura H. 2003: Anisakiasis (2) Clinical pathology and epidemiology. In: M. Otsuru, S. Kamegai and S. Hayashi (Eds.), Progress of Medical Parasitology in Japan. Meguro Parasitological Museum, Tokyo, pp. 451-473.
Jamieson A., Otterlind G. 1971: The use of cod blood protein polymorphisms in the Belt Sea, The Sound and the Baltic Sea. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 161: 55-59.
Jensen T., Andersen K., Desclers S. 1994: Seal worm (Pseudoterranova decipiens) infections in demersal fish from two areas in Norway. Can. J. Zool. 72: 598-608. DOI
Jensen T., Idås K. 1992: Infection with Pseudoterranova decipiens (Krabbe, 1878) larvae in cod (Gadus morhua) relative to proximity of seal colonies. Sarsia 76: 227-230. DOI
Johansen C.E. 2010: Helminth parasites in ringed seal (Pusa hispida) from Svalbard, Norway, with special emphasis on nematodes: variation with age, sex, diet and location of host. J. Parasitol. 96: 946-953. PubMed DOI
Juels C.W., Butler W., Bier J.W., Jackson G.J. 1975: Temporary human infection with a Phocanema sp. larva. Am. J. Trop. Med. Hyg. 24: 942-944. PubMed DOI
Kahl W. 1939: Nematoden in Seefischen III. Statistiche Erhebungen über den Nematoden-befall von Seefischen. Z. Parasitenkd. 11: 16-41. DOI
Kliks M.M. 1983: Anisakiasis in the western United States: four new case reports from California. Am. J. Trop. Med. Hyg. 32: 526-532. PubMed DOI
Knecht D., Popiołek M., Zalesny G. 2011: Does meatiness of pigs depend on the level of gastro-intestinal parasites infection? Prevent. Vet. Med. 99: 234-239. PubMed DOI
Koh M.S., Huh S., Sohn W.M. 1999: A case of gastric pseudoterranoviasis in a 43-year-old man in Korea. Kor. J. Parasitol. 37: 47-49. PubMed DOI
Køie M., Berland B., Burt M.D.B. 1995: Development to third stage larvae occurs in the eggs of Anisakis simplex and Pseudoterranova decipiens (Nematoda, Ascaridoidea, Anisakidae). Can. J. Fish. Aquat. Sci. 52: 134-139. DOI
Køie M., Fagerholm H. P. 1995: The life-cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitol. Res. 81: 481-489. PubMed DOI
Krøyer H.N. 1845: [Fishes of Denmark 1843-1845).] Part 2: 578-579. Trier's Officin, Copenhagen. (In Danish.)
Kuhn T., Benninghoff T., Karl H., Landry T., Klimpel S. 2013: Sealworm Pseudoterranova decipiens s. s. infection of European smelt Osmerus eperlanus in German coastal waters: ecological implications. Dis. Aquat. Org. 102: 217-224. PubMed DOI
Laursen K., Møller A. P. 2014: Long-term changes in nutrients and mussel stocks are related to numbers of breeding eiders Somateria mollissima at a large Baltic colony. PLoS One 9: e95851. PubMed DOI
Li L., Lu L., Nadler S.A., Gibson D.I., Zhang L.-P., Chen H.-X., Zhao W.-T., Guo Y.-N. 2018: Molecular phylogeny and dating reveal a terrestrial origin in the Early Carboniferous for ascaridoid nematodes. Syst. Biol. 67: 888-900. PubMed DOI
Lichtenfels J.R., Brancato F.P. 1976: Anisakid larva from the throat of an Alaskan Eskimo. Am. J. Trop. Med. Hyg. 25: 691-693. PubMed DOI
Little M.D., MacPhail J.C. 1972: Large nematode larva from the abdominal cavity of a man in Massachusetts. Am. J. Trop. Med. Hyg. 21: 948-950. PubMed DOI
Little M.D., Most H. 1973: Anisakid larva from the throat of a woman in New York. Am. J. Trop. Med. Hyg. 22: 609-612. PubMed DOI
Lunneryd S. G., Bostrom M. K., Aspholm P. E. 2015: Sealworm (Pseudoterranova decipiens) infection in grey seals (Halichoerus grypus), cod (Gadus morhua) and shorthorn sculpin (Myoxocephalus scorpius) in the Baltic Sea. Parasitol. Res. 114: 257-264. PubMed DOI
MacKenzie K. 2002: Parasites as biological tags in population studies of marine organisms: an update. Parasitology 124: S153-S163. PubMed DOI
Marcogliese D.J., Boily F., Hammill M.O. 1996: Distribution and abundance of stomach nematodes (Anisakidae) among grey seals (Halichoerus grypus), harp seals (Phoca groenlandica) in the Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 53: 2829-2836. DOI
Margolis L. 1977: Public health aspects of "codworm" infection: a review. J. Fish. Res. B. Can. 34: 887-898. DOI
Marnis H., Kania P. W., Syahputra K., Zuo S., Buchmann K. 2020: Local immune depression in Baltic cod (Gadus morhua)liver infected with Contracaecum osculatum. J. Helminthol. 94: e112: 1-10. PubMed DOI
Marnis H., Kania P. W., Syahputra K., Zuo S., Dirks R. P., Buchmann K. 2019: Transcriptomic analysis of Baltic cod (Gadus morhua) liver infected with Contracaecum osculatum third stage larvae indicates parasitic effects on growth and immune response. Fish Shellf. Immunol. 93: 965-976. PubMed DOI
Mattiucci S., Nascetti G. 2008: Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary process. Adv. Parasitol. 66: 47-148. PubMed DOI
McClelland G. 2002: The trouble with sealworms (Pseudoterranova decipiens species complex, Nematoda): a review. Parasitology 124: 183-203. PubMed DOI
McClelland G., Martell D.J. 2001: Surveys of larval sealworm (Pseudoterranova decipiens) infection in various fish species sampled from Nova Scotian waters between 1988 and 1996, with an assessment of examination procedures. NAMMCO Sci. Publ. 3: 57-76. DOI
Measures L.N. 1996: Effect of temperature and salinity on development and survival of eggs and free-living larvae of sealworm (Pseudoterranova decipiens). Can. J. Fish. Aquat. Sci. 53: 2804-2807. DOI
Mehrdana F., Bahlool Q.Z.M., Skov J., Marana M. H., Sindberg D., Mundeling M., Overgaard B.C., Korbut R., Strøm S., Kania P.W., Buchmann K. 2014: Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet. Parasitol. 205: 581-587. PubMed DOI
Mehrdana F., Kania P.W., Buchmann K. 2017: Immunomodulatory effects of excretory/secretory compounds from Contracaecum osculatum larvae in a zebrafish inflammation model. PLoS ONE 12: e0181277. PubMed DOI
Mejndor S. 1944: Christiansø. In H. Hjorth (Ed.), Land of the Bornholmians. Bornholms Tidendes Forlag, Rønne, Denmark, 2: pp. 341-356.
Mercado R., Torres P., Muñoz V., Apt W. 2001: Human infection by Pseudoterranova decipiens (Nematoda, Anisakidae) in Chile: report of seven cases. Mem. Inst. Oswaldo Cruz 96: 653-655. PubMed DOI
Mohamed A., Zuo,S., Karami A.M., Marnis H., Setyawan A., Mehrdana F., Kirkeby C., Kania P., Buchmann K. 2020: Contracaecum osculatum (sensu lato) infection of Gadus morhua in the Baltic Sea: inter- and intraspecific interactions. Int. J. Parasitol. 50: 891-898. PubMed DOI
Münster J., Klimpel S., Fock H.O., MacKenzie K., Kuhn T.A. 2015: Parasites as biological tags to track an ontogenetic shift in the feeding behaviour of Gadus morhua off West and East Greenland. Parasitol. Res. 114: 2723-2733. PubMed DOI
Myjak P., Szostakowska B., Wojciechowski J., Pietkiewicz H., Rokicki J. 1994: Anisakid larvae in cod from the southern Baltic Sea. Arch. Fish. Mar. Res. 42: 149-161.
Na H.K., Seo M., Chai J.Y, Lee E.K., Jeon S.M. 2013: A case of anisakidosis caused by Pseudoterranova decipiens larva. Kor. J. Parasitol. 51: 115-117. PubMed DOI
Nadler S.A., Hudspeth D. S. 2000: Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J. Parasitol. 86: 380-393. PubMed DOI
Nadolna K., Podolska M. 2014: Anisakid larvae in the liver of cod (Gadus morhua) L. from the southern Baltic Sea. J. Helminthol. 88: 237-246. PubMed DOI
Nadolna-Altyn K., Podolska M., Szostakowska B. 2017: Great sand eel (Hyperoplus lanceolatus) as a putative transmitter of parasite Contracaecum osculatum (Nematoda: Anisakidae). Parasitol. Res. 116: 1931-1936. PubMed DOI
Nagasawa K. 2012: The biology of Contracaecum osculatum sensu lato and C. osculatum A (Nematoda: Anisakidae) in Japanese waters: a review. Biosph. Sci. 51: 61-69.
Nordholm A., Kurtzhals J.A.L., Karami A.M., Kania P. W., Buchmann K. 2020: Nasal localization of a Pseudoterranova decipiens larva in a Danish patient with suspected allergic rhinitis. J. Helminthol. 94: e187 PubMed DOI
Olafsdottir D., Hauksson E. 1997: Anisakid (Nematoda) infestations in Icelandic grey seals (Halichoerus grypus Fabr.). J. Northw. Atlant. Fish. Sci. 22: 259-269. DOI
Olafsdottir D., Hauksson E. 1998: Anisakid nematodes in the common seal Phoca vitulina L. in Icelandic waters. Sarsia 83: 309-316. DOI
Olsen M. T., Galatius A., Härkönen T. 2018: The history and effects of seal-fishery conflicts in Denmark. Mar. Ecol. Progr. Ser. 595: 233-243. DOI
Ovegård M., Ljungberg P., Orio A., Öhman K., Norrman E.B., Lunneryd S.G. 2022: The effects of Contracaecum osculatum larvae on the growth of Atlantic cod (Gadus morhua). Int. J. Parasitol. Parasit. Wildl. 19: 161-168. PubMed DOI
Pawlak J., Nadolna-Altyn K., Szostakowska B., Pachur M., Bankowska A., Podolska M. 2019: First evidence for presence of Anisakis simplex in Crangon crangon and Contracaeum osculatum in Gammarus sp. by in situ examination of the stomach contents of cod (Gadus morhua) from the Southern Baltic Sea. Parasitology 146: 1699-1706. PubMed DOI
Pedersen P.K.V. 1933: [Fisheries Organisation for Bornholm and Christiansø for 50 years (1883-1933).] In: P.K.V. Pedersen (Ed.), Colberg Book Printing House, Rønne, Denmark. pp. 5-33. (In Danish.)
Pedersen S., Saeed I., Michaelsen K.F., Friis H., Murrell K.D. 2002: Impact of protein energy malnutrition on Trichuris suis infection in pigs concomitantly infected with Ascaris suum. Parasitology 124: 561-568. PubMed DOI
Perdiguero-Alonso D., Montero F., Raga J. A., Kostadinova A. 2008: Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae) in the North East Atlantic. Parasit. Vect. 1: 1-18. PubMed DOI
Petrushevski G.K., Shulman G.G. 1955: [Infection of Baltic cod liver with roundworms.] Trud. Akad. Nauk Lit. SSR Ser. B 2: 119-125. (In Russian.)
Pinel C., Beaudevin M., Chermette R., Grillot R., Ambroise-Thomas P. 1996: Gastric anisakidosis due to Pseudoterranova decipiens larva. Lancet 347: 1829. PubMed DOI
Raillet A., Henry A. 1912: Quelqes nematodes parasites des reptiles. Bull. Soc. Pathol. Exot. 5: 251-259.
Rodyuk G.N. 2014: [Infestation rates of the main commercial fish species with larvae of Contracaecum osculatum (Rudolphi, 1802) in Russian waters of the South Baltic in 2000-2012.] Parazitologiya 48: 220-232. (In Russian with English summary.)
Rudolphi C.A. 1802: Fortsetzung der Beobachtungen über die Eingeweidewürmen. Arch. Zool. Zoot., Braunschweig 2: 1-67.
Rybczynski N., Dawson M.R., Tedford R.H. 2009: A semi-aquatic Arctic mammalian carnivore from the Miocene epoch and origin of Pinnipedia. Nature 458: 1021-1024. PubMed DOI
Ryberg M.P., Huwer B., Nielsen A., Dierking J., Buchmann K., Sokolova M., Krumme U., Behrens J.W. 2021: Parasite load of Atlantic cod Gadus morhua in the Baltic Sea assessed by the liver category method, and associations with infection density and critical condition. Fisheries Manag. Ecol. 29: 88-99. DOI
Ryberg M.P., Skov P.V., Vendramin N., Buchmann K., Nielsen A., Behrens J.W. 2020: Physiological condition of Eastern Baltic cod, Gadus morhua, infected with the parasitic nematode Contracaecum osculatum. Cons. Physiol. 8: 1-14. PubMed DOI
Sawada Y., Moriyama Y., Ebina T., Sasaki H., Yoshida Y., Tanabe K., Chiba R. 1983: Gastric terranovasis: report of 14 cases. Gastroent. Endosc. 25: 713-717.
Schaum E., Müller W. 1967: Heterocheilidiasis (case report). Deutsch. Medizin. Wochenschr. 92: 2230-2233. PubMed DOI
Schneider A. 1862: Ein Fall simulierter Helminthiasis. Arch. Anatom. Physiol. Wissenschaftl. Med. 4: 275-276.
Setyawan A.C., Jensen H.M., Kania P.W., Buchmann K. 2020: Baltic cod endohelminths reflect recent ecological changes. J. Helminthol. 94: E155. Doi:10.1017/S0022149X20000176. PubMed DOI
Severin N.L., Yurchenko M., Sørensen J.S., Zuo S., Karami A.M., Kania P.W., Buchmann K. 2020: Anisakid nematode larvae in the liver of Atlantic cod Gadus morhua L. from West Greenland. Parasitol. Res. 119: 3233-3241. PubMed DOI
Shamsi S., Butcher A.R. 2011: First report of human anisakidosis in Australia. Med. J. Austr. 194: 199-200. PubMed DOI
Sick K. 1965: Hemoglobin polymorphisms in the cod of the Baltic and Danish Belt Sea. Hereditas 54: 19-48. PubMed DOI
Skirnisson K. 2006: [Pseudoterranova decipiens (Nematoda, Anisakidae) larvae reported from humans in Iceland after consumption of insufficiently cooked fish.] Iceland. Med. J. 92: 21-25. (In Icelandic with English summary.)
Skirnisson K. 2022: [Human Pseudoterranova and Anisakis cases in Iceland 2004-2020.] Iceland. Med. J. 108: 79-83. (In Icelandic with English summary.) DOI
Skrzypczak M., Rokicki J., Pawliczka I., Najda K., Dzido J. 2014: Anisakids of seals found on the southern coast of Baltic Sea. Acta Parasitol. 59: 165-172. PubMed DOI
Sokolova M., Buchmann K., Huwer B., Kania P.W., Krumme U., Galatius A., Hemmer-Hansen J., Behrens J.W. 2018: Spatial patterns in infection of cod Gadus morhua with the seal-associated liver worm Contracaecum osculatum from the Skagerrak to the central Baltic Sea. Mar. Ecol. Progr. Ser. 606: 105-118. DOI
Star B., Nederbragt A.J., Jentoft S., Grimholt U., Malmstrøm M., Gregers T.F., Rounge T.B., Paulsen J., Solbakken M.H., Sharma A., Wetten O.F., Lanzén A., Winer R., Knight J. et al. 2011: The genome sequence of Atlantic cod reveals a unique immune system. Nature 477: 207-210. PubMed DOI
Strøm S.B., Haarder S., Korbut R., Mejer H., Thamsborg S.M., Kania P.W., Buchmann K. 2015: Third-stage nematode larvae of Contracaecum osculatum from Baltic cod (Gadus morhua) elicit eosinophilic granulomatous reactions when penetrating the stomach mucosa of pigs. Parasitol. Res. 114: 1217-1220. PubMed DOI
Szostakowska B., Fagerholm H. P., Kur J., Myjak P., Sachadyn P. 2002: Identification of anisakid nematodes from the southern Baltic using PCR based methods. Mol. Cell Prob. 16: 111-118. PubMed DOI
Thurow F. 1997: Estimation of the total fish biomass in the Baltic Sea during the 20th century. ICES J. Mar. Sci. 54: 444-461. DOI
Timi J.T., Poulin R. 2020: Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50: 755-761. PubMed DOI
Timi J., Buchmann K. 2023: A century of parasitology in fisheries and aquaculture. J. Helminthol. 97: E4. PubMed DOI
Torres P., Jercic M.I., Weitz J.C., Dobrew E.K., Mercado R.A. 2007: Human pseudoterranovosis, an emerging infection in Chile. J. Parasitol. 93: 440-443. PubMed DOI
Yu J.R., Seo M., Kim Y.W., Oh M.H., Sohn W.M. 2001: A human case of gastric infection by Pseudoterranova decipiens larva. Kor. J. Parasitol. 39: 193-196. PubMed DOI
Zuo S., Huwer B., Bahlool Q., Al-Jubury A., Christensen N.D., Korbut R., Kania P., Buchmann, K. 2016: Host size dependent anisakid infection in Baltic cod Gadus morhua associated with differential food preferences. Dis. Aquat. Org. 120: 69-75. PubMed DOI
Zuo S., Barlaup L., Mohammadkarami A., Al-Jubury A., Chen D., Kania P.W., Buchmann K. 2017: Extrusion of Contracaecum osculatum nematode larvae from the liver of cod (Gadus morhua). Parasitol. Res. 116: 2721-2726. PubMed DOI
Zuo S., Kania P.W., Mehrdana F., Marana M.H., Buchmann K. 2018: Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic sea: molecular and ecological links. J. Helminthol. 92: 81-89. PubMed DOI