Genetic algorithm designed for optimization of neural network architectures for intracranial EEG recordings analysis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37285840
DOI
10.1088/1741-2552/acdc54
Knihovny.cz E-zdroje
- Klíčová slova
- deep learning, genetic algorithms, intracranial EEG, neural network, optimization,
- MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie * MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítačové zpracování signálu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Objective.The current practices of designing neural networks rely heavily on subjective judgment and heuristic steps, often dictated by the level of expertise possessed by architecture designers. To alleviate these challenges and streamline the design process, we propose an automatic method, a novel approach to enhance the optimization of neural network architectures for processing intracranial electroencephalogram (iEEG) data.Approach.We present a genetic algorithm, which optimizes neural network architecture and signal pre-processing parameters for iEEG classification.Main results.Our method improved the macroF1 score of the state-of-the-art model in two independent datasets, from St. Anne's University Hospital (Brno, Czech Republic) and Mayo Clinic (Rochester, MN, USA), from 0.9076 to 0.9673 and from 0.9222 to 0.9400 respectively.Significance.By incorporating principles of evolutionary optimization, our approach reduces the reliance on human intuition and empirical guesswork in architecture design, thus promoting more efficient and effective neural network models. The proposed method achieved significantly improved results when compared to the state-of-the-art benchmark model (McNemar's test,p≪ 0.01). The results indicate that neural network architectures designed through machine-based optimization outperform those crafted using the subjective heuristic approach of a human expert. Furthermore, we show that well-designed data preprocessing significantly affects the models' performance.
Department of Radioelectronics Brno University of Technology Brno Czech Republic
Faculty of Biomedical Engineering Czech Technical University Prague Kladno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
The Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic
Citace poskytuje Crossref.org