Effect of high-speed steel screw drill geometry on cutting performance when machining austenitic stainless steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FSI-S-22-7957
Brno University of Technology, Czech Republic
PubMed
37286666
PubMed Central
PMC10247819
DOI
10.1038/s41598-023-36448-y
PII: 10.1038/s41598-023-36448-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Drilling into the solid material is one of the basic technological operations, which creates a cylindrical hole in an appropriate time with required quality. Drilling operation demands a favourable removal of chips from the cutting area because a creation of an undesirable shape of chips can impart a lower quality of the drilled hole corresponding with the generation of excess heat due to the intense contact of the chip with drill. The solution for a proper machining is a suitable modification of the drill geometry i.e., point and clearance angles as presented in current study. The tested drills are made of M35 high-speed steel characterized by a very thin core at the point of the drill. An interesting feature of the drills is the use of cutting speed higher than 30 m min-1, with the feed of 0.2 mm per revolution. The surface roughness (Ra and Rz lower than 1 µm and 6 µm respectively), cylindricity (0.045 mm), roundness (0.025 mm), perpendicularity of the hole axis (0.025 mm), diameters and position of the individual holes were achieved for a drill with point angle 138.32°and clearance angle 6.92 respectively. The increase of the drill point angle by 6° resulted in the decrease in the feed force of more than 150 N. In addition, an increase of the clearance angle by 1° resulted with a decrease in the feed force of 70 N. The results of the experiment showed that with the correct geometry of the tool the effective machining without using internal cooling can be realised.
Zobrazit více v PubMed
Dolinsek S. Work-hardening in the drilling of austenitic stainless steels. J. Mater. Process. Technol. 2003;133:63–70. doi: 10.1016/S0924-0136(02)00245-5. DOI
Jaffery S, Mativenga P. Wear mechanisms analysis for turning Ti-6Al-4V—towards the development of suitable tool coatings. Int. J. Adv. Manuf. Technol. 2012;58:479–493. doi: 10.1007/s00170-011-3427-y. DOI
Lotfi M, Amini S, Al-awady I. 3D numerical analysis of drilling process: Heat, wear, and built-up edge. Adv. Manuf. 2018;6:204–214. doi: 10.1007/s40436-018-0223-z. DOI
Oezkaya E, Michel S, Biermann D. Experimental and computational analysis of the coolant distribution considering the viscosity of the cutting fluid during machining with helical deep hole drills. Adv. Manuf. 2022;10:235–249. doi: 10.1007/s40436-021-00383-w. DOI
Fernandes A, Vas JS, D’souza A, Rai A. Analysis of temperature changes during dry drilling of austenitic stainless steels on twist drills having different point angles. J. Mech. Eng. Autom. 2016 doi: 10.5923/c.jmea.201601.23. DOI
Karpat Y, Bahtiyar O. Tool geometry based prediction of critical thrust force while drilling carbon fiber reinforced polymers. Adv. Manuf. 2015;3:300–308. doi: 10.1007/s40436-015-0129-y. DOI
Sultan A, Sharif S, Kurniawan D. Effect of Machining parameters on tool wear and hole quality of AISI 316L stainless steel in conventional drilling. Procedia Manuf. 2015;2:202–207. doi: 10.1016/j.promfg.2015.07.035. DOI
Saputro R, Sukardi T, Wibowo Y, Hardiyanta R. The effect of twist drill angle and spindle speed on surface roughness in S45C steel drilling process. J. Phys. Conf. Ser. 2020;1700:12024. doi: 10.1088/1742-6596/1700/1/012024. DOI
Huang S, Li C, Xu L, Guo L, Yu X. Variation characteristic of drilling force and influence of cutting parameter of SiCp/Al composite thin-walled workpiece. Adv. Manuf. 2019;7:288–302. doi: 10.1007/s40436-019-00264-3. DOI
Demir Z. An experimental investigation of the effects of point angle on the high-speed steel drills performance in drilling. Meas. Control (London) 2018;51:417–430. doi: 10.1177/0020294018797853. DOI
Hassan M, Abdullah J, Franz G. Multi-objective optimization in single-shot drilling of CFRP/Al stacks using customized twist drill. Materials. 2022;15:1981. doi: 10.3390/ma15051981. PubMed DOI PMC
Wang X, Huang C, Zou B, Liu H, Wang J. Effects of geometric structure of twist drill bits and cutting condition on tool life in drilling 42CrMo ultrahigh-strength steel. Int. J. Adv. Manuf. Technol. 2013;64:41–47. doi: 10.1007/s00170-012-4026-2. DOI
Yuvaraj, G., Fannan, C., Junaidh, A. & Aakash, V. Investigation the effect of point angle while drilling titanium. In Materials Today: Proceedings 824–831 (Elsevier, 2019).
Kadhim A, Hassan A, Rishack Q. The effect of machining parameters and drill point angle on the temperature distribution in AISI 304 stainless steel during dry drilling operation. Basrah J. Eng. Sci. 2021;21:25–33. doi: 10.33971/bjes.21.3.3. DOI
Murad M, Sharif S, Rahim E, Rival Effect of drill point angle on surface integrity when drilling titanium alloy. Adv. Mater. Res. 2013;845:966–970. doi: 10.4028/www.scientific.net/AMR.845.966. DOI
Zhu X, Wang W, Jiang R, Zhang Z, Huang B, Ma X. Research on ultrasonic-assisted drilling in micro-hole machining of the DD6 superalloy. Adv. Manuf. 2020;8:405–417. doi: 10.1007/s40436-020-00301-6. DOI
Üllen, N. & Önenç, T. The influence of change in microstructure by heat treatment on drill quality of hot forged AISI 4140 steel. In IMMC2021-International Metallurgy and Materials Congress (2021).
Li X, Wei Y, Wei Z, Zhou J. Effect of cold rolling on microstructure and mechanical properties of AISI 304N stainless steel. IOP Conf. Ser. Earth Environ. Sci. 2019;252:22027. doi: 10.1088/1755-1315/252/2/022027. DOI
Necesanek, E. Vrták CZ005 – nový člen rodiny. Strojárstvo: Strojírenství (2021).
De Vos, P. Obrábění nerezových ocelí. Seco Tools CZ (2012).
Klimek, P. Vliv tloušťky jádra šroubovitého vrtáku na silové poměry při vrtání (2008).
Experimental Analysis of Effect of Machined Material on Cutting Forces during Drilling