Properties of Bovine Collagen as Influenced by High-Pressure Processing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-07851S.
GRANT AGENCY OF CZECH REPUBLIC
PubMed
37299271
PubMed Central
PMC10255401
DOI
10.3390/polym15112472
PII: polym15112472
Knihovny.cz E-resources
- Keywords
- bovine collagen, high-pressure processing, physical properties, structure properties,
- Publication type
- Journal Article MeSH
The physical properties and structure of collagen treated with high-pressure technologies have not yet been investigated in detail. The main goal of this work was to determine whether this modern gentle technology significantly changes the properties of collagen. High pressure in the range of 0-400 MPa was used, and the rheological, mechanical, thermal, and structural properties of collagen were measured. The rheological properties measured in the area of linear viscoelasticity do not statistically significantly change due to the influence of pressure or the duration of pressure exposure. In addition, the mechanical properties measured by compression between two plates are not statistically significantly influenced by pressure value or pressure hold time. The thermal properties Ton and ∆H measured by differential calorimetry depend on pressure value and pressure hold time. Results from amino acids and FTIR analyses show that exposure of collagenous gels to high pressure (400 MPa), regardless of applied time (5 and 10 min), caused only minor changes in the primary and secondary structure and preserved collagenous polymeric integrity. SEM analysis did not show changes in collagen fibril ordering orientation over longer distances after applying 400 MPa of pressure for 10 min.
See more in PubMed
Lasek W. Kolagen. 1st. ed. Wydawnictwa Naukowo-Techniczne; Warsaw, Poland: 1978. pp. 5–495.
Owczarzy A., Kurasiński R., Kulig K., Rogóż W., Szkudlarek A., Maciążek-Jurczyk M. Collagen—Structure, properties and Applications. Eng. Biomater. 2020;156:17–23. doi: 10.34821/eng.biomat.156.2020.17-23. DOI
Shoulders M.D., Raines R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Sionkowska A., Skrzyński S., Śmiechowski K., Kołodziejczak A. The review of versatile application of collagen. Polym. Adv. Technol. 2017;28:4–9. doi: 10.1002/pat.3842. DOI
Liu J., Hua F., Zhang H., Hu J. Influence of using collagen on the soft and hard tissue outcomes of immediate dental implant placement: A systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2023;124:101385. doi: 10.1016/j.jormas.2023.101385. PubMed DOI
Hyder P.R., Dowell P., Singh G., Dolby A.E. Freeze-Dried, Crosslinked Bovine Type I Collagen: Analysis of Properties. J. Periodontol. 1992;63:182–186. doi: 10.1902/jop.1992.63.3.182. PubMed DOI
Brum I.S., Elias C.N., de Carvalho J.J., Pires J.L.S., Pereira M.J.S., de Biasi R.S. Properties of a bovine collagen type I membrane for guided bone regeneration Applications. e-Polymers. 2021;21:210–221. doi: 10.1515/epoly-2021-0021. DOI
Yu L., Cavelier S., Hannon B., Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact. Mater. 2023;25:122–159. doi: 10.1016/j.bioactmat.2023.01.012. PubMed DOI PMC
Liu W., Ma Z., Wang Y., Yang J. Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives. Bioact. Mater. 2023;23:274–299. doi: 10.1016/j.bioactmat.2022.11.006. PubMed DOI PMC
Tang C., Zhou K., Zhu Y., Zhang W., Xie Y., Wang Z., Zhou H., Yang T., Zhang Q., Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll. 2022;131:107748. doi: 10.1016/j.foodhyd.2022.107748. DOI
Messens W., Van Camp J., Huyghebaert A. The use of high pressure to modify the functionality of food proteins. Trends Food Sci. Technol. 1997;8:107–112. doi: 10.1016/S0924-2244(97)01015-7. DOI
Knorr D., Heinz V., Buckow R. High pressure application for food biopolymers. Biochim. Biophys. Acta. 2006;1764:619–631. doi: 10.1016/j.bbapap.2006.01.017. PubMed DOI
Dumay E., Picart L., Regnault S., Thiebaud M. High pressure–low temperature processing of food proteins. Biochim. Biophys. Acta. 2006;1764:599–618. doi: 10.1016/j.bbapap.2005.12.009. PubMed DOI
Tao Y., Sun D.W., Hogan E., Kelly A.L. Chapter 1—High-Pressure Processing of Foods: An Overview. In: Sun D.W., editor. Emerging Technologies for Food Processing. Academic Press; Cambridge, MA, USA: 2014. pp. 3–24. DOI
Chen L., Ma L., Zhou M., Liu Y., Zhang Y. Effects of pressure on gelatinization of collagen and properties of extracted gelatins. Food Hydrocoll. 2014;36:316–322. doi: 10.1016/j.foodhyd.2013.10.012. DOI
Mobasheri A., Mahmoudian A., Kalvaityte U., Uzieliene I., Larder C.E., Iskandar M.M., Kubow S., Hamdan P.C., de Almeida C.S., Favazzo L.J., et al. White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis? Curr. Rheumatol. Rep. 2021;23:78. doi: 10.1007/s11926-021-01042-6. PubMed DOI PMC
Ma Y., Teng A., Zhao K., Zhang K., Zhao H., Duan S., Li S., Guo Y., Wang W. A top-down approach to improve collagen film’s performance: The comparisons of macro, micro and nano sized fibers. Food Chem. 2020;309:125624. doi: 10.1016/j.foodchem.2019.125624. PubMed DOI
Cheftel J.C., Balny C., Hayashi R., Heremans K. Effects of high hydrostatic pressure on food constituents: An overview. In: Masson P., editor. High Pressure and Biotechnology. John Libbey Eurotext; London, UK: 1992. pp. 195–209.
Balny C., Masson P. Effects of high pressure on proteins. Food Rev. Int. 1993;9:611–628. doi: 10.1080/87559129309540980. DOI
Tauscher B. Pasteurization of food by hydrostatic high pressure: Chemical aspects. Z. Für Lebensm. -Unters. Und Forsch. 1995;200:3–13. doi: 10.1007/BF01192901. PubMed DOI
Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI
Potekhin S.A., Senin A.A., Abdurakhmanov N.N., Tiktopulo E.I. High pressure stabilization of collagen structure. Biochim. Et Biophys. Acta. 2009;1794:1151–1158. doi: 10.1016/j.bbapap.2009.04.005. PubMed DOI
Nan J., Zou M., Wang H., Xu C., Zhang J., Wei B., He L., Xu Y. Effect of ultra-high pressure on molecular structure and properties of bullfrog skin collagen. Int. J. Biol. Macromol. 2018;111:200–207. doi: 10.1016/j.ijbiomac.2017.12.163. PubMed DOI
Landfeld A., Houška M., Skočilas J., Žitný R., Novotná P., Štancl J., Dostál M., Chvátil D. The Effect of Irradiation on Rheological and Electrical Properties of Collagen. Appl. Rheol. 2016;26:35–41. doi: 10.3933/applrheol-26-43775. DOI
Holzapfel G.A., Gasser T.C., Ogden R. Comparison of a Multi-Layer Structural Model for Arterial Walls with a Fung-Type Model, and Issues of Material Stability. J. Biomech. Eng. 2004;126:264–275. doi: 10.1115/1.1695572. PubMed DOI
Chlup H., Skočilas J., Štancl J., Houška M., Žitný R. Effects of extrusion and irradiation on the mechanical properties of a water-collagen solution. Polymers. 2022;14:578. doi: 10.3390/polym14030578. PubMed DOI PMC
Bella J., Brodsky B., Berman H.M. Hydration structure of a collagen peptide. Structure. 1995;3:893–906. doi: 10.1016/S0969-2126(01)00224-6. PubMed DOI
[(accessed on 22 February 2023)]. Available online: https://www.agilent.com/cs/library/applications/compendium-%20aminoacid-advancebio-5994-0033EN-us-agilent.pdf. (Published in the USA, 30 April 2021)
Palay S.L., McGee-Russell S.M., Gordon S., Jr., Grillo M.A. Fixation of neural tissue for electron microscopy by perfusion with solution of osmium tetroxide. J. Cell Biol. 1962;12:385–410. doi: 10.1083/jcb.12.2.385. PubMed DOI PMC
Barnes H.A. A Handbook of Elementary Rheology. The University of Wales, Institute of Non-Newtonian Fluid Mechanics, Department of Mathematics; Aberystwyth, UK: 2000.
Šupová M., Suchý T., Chlup H., Štípek J., Žitný R., Landfeld A., Skočilas J., Žaloudková M., Rýglová Š., Braun M., et al. The comprehensive evaluation of two collagen gels used for sausage casing extrusion purposes: The role of the structural and mechanical properties. J. Food Eng. 2023;343:111387. doi: 10.1016/j.jfoodeng.2022.111387. DOI
Štěpánek V. Matematická statistika v chemii, Státní nakladatelství technické literatury, Praha 1975. Script Book,(Prague, Czech Republic)
Riaz T., Zeeshan R., Zarif F., Ilyas K., Muhammad N., Safi S.Z., Rahim A., Rizvi S.A.A., Rehman I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018;53:703–746. doi: 10.1080/05704928.2018.1426595. DOI
Szymanski H.A., Erickson R.E. Infrared Band Handbook. Volumes 1–2 Plenum Press; New York, NY, USA: 1970.
Coates J. Interpretation of Infrared Spectra, a Practical Approach. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry. John Wiley and Sons; Chichester, UK: 2000. pp. 10815–10837.
Jackson M., Choo L.P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI
Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC
Sommer A., Dederko-Kantowicz P., Staroszczyk H., Sommer S., Michalec M. Enzymatic and Chemical Crosslinking of Bacterial Cellulose/Fish Collagen Composites—A Comparative Study. Int. J. Mol. Sci. 2021;22:3346. doi: 10.3390/ijms22073346. PubMed DOI PMC
Figueiro S., Goes J., Moreira R., Sombra A. On the physicochemical and dielectric properties of glutaraldehyde crosslinked galactomannan–collagen films. Carbohydr. Polym. 2004;56:313–320. doi: 10.1016/j.carbpol.2004.01.011. DOI
Payne K.J., Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI
Gauza-Włodarczyk M., Kubisz L., Mielcarek S., Włodarczyk D. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K. Mater. Sci. Eng. C. 2017;80:468–471. doi: 10.1016/j.msec.2017.06.012. PubMed DOI
Zhang Z., Li G., Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chem. 2006;90:23–28.
Lin Y.K., Liu D.C. Comparison of physical–chemical properties of type I collagen from different species. Food Chem. 2006;99:244–251. doi: 10.1016/j.foodchem.2005.06.053. DOI
Zhang X., Xu L., Huang X., Wei S., Zhai M. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. J. Biomed. Mater. Res. A. 2012;100:2960–2969. doi: 10.1002/jbm.a.34243. PubMed DOI
Prystupa D.A., Donald A.M. Infrared study of gelatin conformations in the gel and sol states. Polym. Gels Netw. 1996;4:87–110. doi: 10.1016/0966-7822(96)00003-2. DOI
Sanden K.W., Böcker U., Ofstad R., Pedersen M.E., Høst V., Afseth N.K., Rønning S.B., Pleshko N. Characterization of collagen structure in normal, wooden breast and spaghetti meat chicken fillets by FTIR microspectroscopy and histology. Foods. 2021;10:548. doi: 10.3390/foods10030548. PubMed DOI PMC
Gaar J., Naffa R., Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020;7:2789–2814. doi: 10.1039/D0QO00624F. DOI
Gauza-Włodarczyk M., Kubisz K., Włodarczyk D. Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int. J. Biol. Macromol. 2017;104:987–991. doi: 10.1016/j.ijbiomac.2017.07.013. PubMed DOI
Heremans R., Smeller L. Protein structure and dynamics at high pressure. Biochim. Biophys. Acta. 1998;1386:353–370. doi: 10.1016/S0167-4838(98)00102-2. PubMed DOI
Zitnay J.L., Li Y., Qin Z., San B.H., Depalle B., Reese S.P., Buehler M.J., Yu S.M., Weiss J.A. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat. Commun. 2017;8:14913. doi: 10.1038/ncomms14913. PubMed DOI PMC
Ahmed J., Habeebullah S.F.K., Alagarsamy S., Mulla M.Z., Thomas L. Impact of High-Pressure Treatment on Amino Acid Profile, Fatty Acid Compositions, and Texture of Yellowfin Seabream (Acanthopagrus arabicus) Filets. Front. Sustain. Food Syst. 2022;6:857072. doi: 10.3389/fsufs.2022.857072. DOI
Li X., He Z., Xu J., Su C., Xiao X., Zhang L., Zhang H., Li H. Conformational Changes in Proteins Caused by High-Pressure Homogenization Promote Nanoparticle Formation in Natural Bone Aqueous Suspension. Foods. 2022;11:2869. doi: 10.3390/foods11182869. PubMed DOI PMC