• This record comes from PubMed

Properties of Bovine Collagen as Influenced by High-Pressure Processing

. 2023 May 26 ; 15 (11) : . [epub] 20230526

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
21-07851S. GRANT AGENCY OF CZECH REPUBLIC

The physical properties and structure of collagen treated with high-pressure technologies have not yet been investigated in detail. The main goal of this work was to determine whether this modern gentle technology significantly changes the properties of collagen. High pressure in the range of 0-400 MPa was used, and the rheological, mechanical, thermal, and structural properties of collagen were measured. The rheological properties measured in the area of linear viscoelasticity do not statistically significantly change due to the influence of pressure or the duration of pressure exposure. In addition, the mechanical properties measured by compression between two plates are not statistically significantly influenced by pressure value or pressure hold time. The thermal properties Ton and ∆H measured by differential calorimetry depend on pressure value and pressure hold time. Results from amino acids and FTIR analyses show that exposure of collagenous gels to high pressure (400 MPa), regardless of applied time (5 and 10 min), caused only minor changes in the primary and secondary structure and preserved collagenous polymeric integrity. SEM analysis did not show changes in collagen fibril ordering orientation over longer distances after applying 400 MPa of pressure for 10 min.

See more in PubMed

Lasek W. Kolagen. 1st. ed. Wydawnictwa Naukowo-Techniczne; Warsaw, Poland: 1978. pp. 5–495.

Owczarzy A., Kurasiński R., Kulig K., Rogóż W., Szkudlarek A., Maciążek-Jurczyk M. Collagen—Structure, properties and Applications. Eng. Biomater. 2020;156:17–23. doi: 10.34821/eng.biomat.156.2020.17-23. DOI

Shoulders M.D., Raines R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC

Sionkowska A., Skrzyński S., Śmiechowski K., Kołodziejczak A. The review of versatile application of collagen. Polym. Adv. Technol. 2017;28:4–9. doi: 10.1002/pat.3842. DOI

Liu J., Hua F., Zhang H., Hu J. Influence of using collagen on the soft and hard tissue outcomes of immediate dental implant placement: A systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2023;124:101385. doi: 10.1016/j.jormas.2023.101385. PubMed DOI

Hyder P.R., Dowell P., Singh G., Dolby A.E. Freeze-Dried, Crosslinked Bovine Type I Collagen: Analysis of Properties. J. Periodontol. 1992;63:182–186. doi: 10.1902/jop.1992.63.3.182. PubMed DOI

Brum I.S., Elias C.N., de Carvalho J.J., Pires J.L.S., Pereira M.J.S., de Biasi R.S. Properties of a bovine collagen type I membrane for guided bone regeneration Applications. e-Polymers. 2021;21:210–221. doi: 10.1515/epoly-2021-0021. DOI

Yu L., Cavelier S., Hannon B., Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact. Mater. 2023;25:122–159. doi: 10.1016/j.bioactmat.2023.01.012. PubMed DOI PMC

Liu W., Ma Z., Wang Y., Yang J. Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives. Bioact. Mater. 2023;23:274–299. doi: 10.1016/j.bioactmat.2022.11.006. PubMed DOI PMC

Tang C., Zhou K., Zhu Y., Zhang W., Xie Y., Wang Z., Zhou H., Yang T., Zhang Q., Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll. 2022;131:107748. doi: 10.1016/j.foodhyd.2022.107748. DOI

Messens W., Van Camp J., Huyghebaert A. The use of high pressure to modify the functionality of food proteins. Trends Food Sci. Technol. 1997;8:107–112. doi: 10.1016/S0924-2244(97)01015-7. DOI

Knorr D., Heinz V., Buckow R. High pressure application for food biopolymers. Biochim. Biophys. Acta. 2006;1764:619–631. doi: 10.1016/j.bbapap.2006.01.017. PubMed DOI

Dumay E., Picart L., Regnault S., Thiebaud M. High pressure–low temperature processing of food proteins. Biochim. Biophys. Acta. 2006;1764:599–618. doi: 10.1016/j.bbapap.2005.12.009. PubMed DOI

Tao Y., Sun D.W., Hogan E., Kelly A.L. Chapter 1—High-Pressure Processing of Foods: An Overview. In: Sun D.W., editor. Emerging Technologies for Food Processing. Academic Press; Cambridge, MA, USA: 2014. pp. 3–24. DOI

Chen L., Ma L., Zhou M., Liu Y., Zhang Y. Effects of pressure on gelatinization of collagen and properties of extracted gelatins. Food Hydrocoll. 2014;36:316–322. doi: 10.1016/j.foodhyd.2013.10.012. DOI

Mobasheri A., Mahmoudian A., Kalvaityte U., Uzieliene I., Larder C.E., Iskandar M.M., Kubow S., Hamdan P.C., de Almeida C.S., Favazzo L.J., et al. White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis? Curr. Rheumatol. Rep. 2021;23:78. doi: 10.1007/s11926-021-01042-6. PubMed DOI PMC

Ma Y., Teng A., Zhao K., Zhang K., Zhao H., Duan S., Li S., Guo Y., Wang W. A top-down approach to improve collagen film’s performance: The comparisons of macro, micro and nano sized fibers. Food Chem. 2020;309:125624. doi: 10.1016/j.foodchem.2019.125624. PubMed DOI

Cheftel J.C., Balny C., Hayashi R., Heremans K. Effects of high hydrostatic pressure on food constituents: An overview. In: Masson P., editor. High Pressure and Biotechnology. John Libbey Eurotext; London, UK: 1992. pp. 195–209.

Balny C., Masson P. Effects of high pressure on proteins. Food Rev. Int. 1993;9:611–628. doi: 10.1080/87559129309540980. DOI

Tauscher B. Pasteurization of food by hydrostatic high pressure: Chemical aspects. Z. Für Lebensm. -Unters. Und Forsch. 1995;200:3–13. doi: 10.1007/BF01192901. PubMed DOI

Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI

Potekhin S.A., Senin A.A., Abdurakhmanov N.N., Tiktopulo E.I. High pressure stabilization of collagen structure. Biochim. Et Biophys. Acta. 2009;1794:1151–1158. doi: 10.1016/j.bbapap.2009.04.005. PubMed DOI

Nan J., Zou M., Wang H., Xu C., Zhang J., Wei B., He L., Xu Y. Effect of ultra-high pressure on molecular structure and properties of bullfrog skin collagen. Int. J. Biol. Macromol. 2018;111:200–207. doi: 10.1016/j.ijbiomac.2017.12.163. PubMed DOI

Landfeld A., Houška M., Skočilas J., Žitný R., Novotná P., Štancl J., Dostál M., Chvátil D. The Effect of Irradiation on Rheological and Electrical Properties of Collagen. Appl. Rheol. 2016;26:35–41. doi: 10.3933/applrheol-26-43775. DOI

Holzapfel G.A., Gasser T.C., Ogden R. Comparison of a Multi-Layer Structural Model for Arterial Walls with a Fung-Type Model, and Issues of Material Stability. J. Biomech. Eng. 2004;126:264–275. doi: 10.1115/1.1695572. PubMed DOI

Chlup H., Skočilas J., Štancl J., Houška M., Žitný R. Effects of extrusion and irradiation on the mechanical properties of a water-collagen solution. Polymers. 2022;14:578. doi: 10.3390/polym14030578. PubMed DOI PMC

Bella J., Brodsky B., Berman H.M. Hydration structure of a collagen peptide. Structure. 1995;3:893–906. doi: 10.1016/S0969-2126(01)00224-6. PubMed DOI

[(accessed on 22 February 2023)]. Available online: https://www.agilent.com/cs/library/applications/compendium-%20aminoacid-advancebio-5994-0033EN-us-agilent.pdf. (Published in the USA, 30 April 2021)

Palay S.L., McGee-Russell S.M., Gordon S., Jr., Grillo M.A. Fixation of neural tissue for electron microscopy by perfusion with solution of osmium tetroxide. J. Cell Biol. 1962;12:385–410. doi: 10.1083/jcb.12.2.385. PubMed DOI PMC

Barnes H.A. A Handbook of Elementary Rheology. The University of Wales, Institute of Non-Newtonian Fluid Mechanics, Department of Mathematics; Aberystwyth, UK: 2000.

Šupová M., Suchý T., Chlup H., Štípek J., Žitný R., Landfeld A., Skočilas J., Žaloudková M., Rýglová Š., Braun M., et al. The comprehensive evaluation of two collagen gels used for sausage casing extrusion purposes: The role of the structural and mechanical properties. J. Food Eng. 2023;343:111387. doi: 10.1016/j.jfoodeng.2022.111387. DOI

Štěpánek V. Matematická statistika v chemii, Státní nakladatelství technické literatury, Praha 1975. Script Book,(Prague, Czech Republic)

Riaz T., Zeeshan R., Zarif F., Ilyas K., Muhammad N., Safi S.Z., Rahim A., Rizvi S.A.A., Rehman I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018;53:703–746. doi: 10.1080/05704928.2018.1426595. DOI

Szymanski H.A., Erickson R.E. Infrared Band Handbook. Volumes 1–2 Plenum Press; New York, NY, USA: 1970.

Coates J. Interpretation of Infrared Spectra, a Practical Approach. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry. John Wiley and Sons; Chichester, UK: 2000. pp. 10815–10837.

Jackson M., Choo L.P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI

Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC

Sommer A., Dederko-Kantowicz P., Staroszczyk H., Sommer S., Michalec M. Enzymatic and Chemical Crosslinking of Bacterial Cellulose/Fish Collagen Composites—A Comparative Study. Int. J. Mol. Sci. 2021;22:3346. doi: 10.3390/ijms22073346. PubMed DOI PMC

Figueiro S., Goes J., Moreira R., Sombra A. On the physicochemical and dielectric properties of glutaraldehyde crosslinked galactomannan–collagen films. Carbohydr. Polym. 2004;56:313–320. doi: 10.1016/j.carbpol.2004.01.011. DOI

Payne K.J., Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI

Gauza-Włodarczyk M., Kubisz L., Mielcarek S., Włodarczyk D. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K. Mater. Sci. Eng. C. 2017;80:468–471. doi: 10.1016/j.msec.2017.06.012. PubMed DOI

Zhang Z., Li G., Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chem. 2006;90:23–28.

Lin Y.K., Liu D.C. Comparison of physical–chemical properties of type I collagen from different species. Food Chem. 2006;99:244–251. doi: 10.1016/j.foodchem.2005.06.053. DOI

Zhang X., Xu L., Huang X., Wei S., Zhai M. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. J. Biomed. Mater. Res. A. 2012;100:2960–2969. doi: 10.1002/jbm.a.34243. PubMed DOI

Prystupa D.A., Donald A.M. Infrared study of gelatin conformations in the gel and sol states. Polym. Gels Netw. 1996;4:87–110. doi: 10.1016/0966-7822(96)00003-2. DOI

Sanden K.W., Böcker U., Ofstad R., Pedersen M.E., Høst V., Afseth N.K., Rønning S.B., Pleshko N. Characterization of collagen structure in normal, wooden breast and spaghetti meat chicken fillets by FTIR microspectroscopy and histology. Foods. 2021;10:548. doi: 10.3390/foods10030548. PubMed DOI PMC

Gaar J., Naffa R., Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020;7:2789–2814. doi: 10.1039/D0QO00624F. DOI

Gauza-Włodarczyk M., Kubisz K., Włodarczyk D. Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int. J. Biol. Macromol. 2017;104:987–991. doi: 10.1016/j.ijbiomac.2017.07.013. PubMed DOI

Heremans R., Smeller L. Protein structure and dynamics at high pressure. Biochim. Biophys. Acta. 1998;1386:353–370. doi: 10.1016/S0167-4838(98)00102-2. PubMed DOI

Zitnay J.L., Li Y., Qin Z., San B.H., Depalle B., Reese S.P., Buehler M.J., Yu S.M., Weiss J.A. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat. Commun. 2017;8:14913. doi: 10.1038/ncomms14913. PubMed DOI PMC

Ahmed J., Habeebullah S.F.K., Alagarsamy S., Mulla M.Z., Thomas L. Impact of High-Pressure Treatment on Amino Acid Profile, Fatty Acid Compositions, and Texture of Yellowfin Seabream (Acanthopagrus arabicus) Filets. Front. Sustain. Food Syst. 2022;6:857072. doi: 10.3389/fsufs.2022.857072. DOI

Li X., He Z., Xu J., Su C., Xiao X., Zhang L., Zhang H., Li H. Conformational Changes in Proteins Caused by High-Pressure Homogenization Promote Nanoparticle Formation in Natural Bone Aqueous Suspension. Foods. 2022;11:2869. doi: 10.3390/foods11182869. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...