• This record comes from PubMed

Viscoelastic Response of Elastohydrodynamically Lubricated Compliant Contacts below Glass-Transition Temperature

. 2023 May 30 ; 15 (11) : . [epub] 20230530

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
18-26849J Czech Science Foundation

The widespread use of polymers in the high-performance engineering applications brings challenges in the field of liquid lubrication in order to separate the rubbing surfaces by the coherent fluid-film thickness relative to not only the inelastic material response of the polymers. The determination of the mechanical properties by the nanoindentation and the dynamic mechanical analysis represents the key methodology to identify the viscoelastic behavior with respect to the intense frequency and temperature dependance exhibited by polymers. The fluid-film thickness was examined by the optical chromatic interferometry on the rotational tribometer in the ball-on-disc configuration. Based on the experiments performed, first, the complex modulus and the damping factor for the PMMA polymer describing the frequency and temperature dependence were obtained. Afterwards, the central as well as minimum fluid-film thickness were investigated. The results revealed the operation of the compliant circular contact in the transition region very close to the boundary between the Piezoviscous-elastic and Isoviscous-elastic modes of the elastohydrodynamic lubrication regime, and a significant deviation of the fluid-film thickness from the prediction models for both modes in dependence on the inlet temperature.

See more in PubMed

Gilbert M. Plastics Materials: Introduction and Historical Development. In: Gilbert M., editor. Brydson’s Plastics Materials. 8th ed. Elsevier; Amsterdam, The Netherlands: 2016. pp. 2–18.

Geyer R. Mare Plasticum—The Plastic Sea. Springer International Publishing; Cham, Switzerland: 2020. A Brief History of Plastics; pp. 31–47.

Dowson D. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. Volume 182. SAGE Publications; London, UK: 1967. Paper 10: Elastohydrodynamics; pp. 151–167. DOI

Greenwood J.A. An extension of the Grubin theory of elastohydrodynamic lubrication. J. Phys. D. Appl. Phys. 1972;5:309. doi: 10.1088/0022-3727/5/12/309. DOI

Hamrock B.J., Dowson D. Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results. J. Lubr. Technol. 1977;99:264–275. doi: 10.1115/1.3453074. DOI

Dowson D. Elastohydrodynamic and micro-elastohydrodynamic lubrication. Wear. 1995;190:125–138. doi: 10.1016/0043-1648(95)06660-8. DOI

Höglund E. Influence of lubricant properties on elastohydrodynamic lubrication. Wear. 1999;232:176–184. doi: 10.1016/S0043-1648(99)00143-X. DOI

Lugt P.M., Morales-Espejel G.E. A Review of Elasto-Hydrodynamic Lubrication Theory. Tribol. Trans. 2011;54:470–496. doi: 10.1080/10402004.2010.551804. DOI

Meidav T. Viscoelastic Properties of the Standard Linear Solid. Geophys. Prospect. 1964;12:80–99. doi: 10.1111/j.1365-2478.1964.tb01891.x. DOI

Chaudhri M. Impact breakage of semi-brittle spheres. Powder Technol. 2004;143–144:31–40. doi: 10.1016/j.powtec.2004.04.006. DOI

Harrass M., Friedrich K., Almajid A.A. Tribological behavior of selected engineering polymers under rolling contact. Tribol. Int. 2010;43:635–646. doi: 10.1016/j.triboint.2009.10.003. DOI

Friedrich K., Sue H.J., Liu P., Almajid A.A. Scratch resistance of high performance polymers. Tribol. Int. 2011;44:1032–1046. doi: 10.1016/j.triboint.2011.04.008. DOI

Ehret P., Dowson D., Taylor C.M. On lubricant transport conditions in elastohydrodynamic conjunctions. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998;454:763–787. doi: 10.1098/rspa.1998.0185. DOI

Krupka J., Dockal K., Krupka I., Hartl M. Elastohydrodynamic Lubrication of Compliant Circular Contacts near Glass-Transition Temperature. Lubricants. 2022;10:155. doi: 10.3390/lubricants10070155. DOI

Krupka J., Dockal K., Krupka I., Hartl M. Polymer Lubrication: Pressure–Viscosity–Temperature Dependence of Film Thickness for Highly Loaded Compliant Contacts in Elastohydrodynamic Lubrication Regime. J. Tribol. 2023;145:021601. doi: 10.1115/1.4055558. DOI

Hartl M., Krupka I., Poliscuk R., Liska M., Molimard J., Querry M., Vergne P. Thin film colorimetric interferometry. Tribol. Trans. 2001;44:270–276. doi: 10.1080/10402000108982458. DOI

Mathiesen D., Vogtmann D., Dupaix R.B. Characterization and constitutive modeling of stress-relaxation behavior of Poly(methyl methacrylate) (PMMA) across the glass transition temperature. Mech. Mater. 2014;71:74–84. doi: 10.1016/j.mechmat.2014.01.003. DOI

Hooke C.J. The Elastohydrodynamic Lubrication of Elliptical Point Contacts Operating in the Isoviscous Region. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1995;209:225–234. doi: 10.1243/PIME_PROC_1995_209_433_02. DOI

Hamrock B.J., Dowson D. Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus I—Fully Flooded Conjunction. J. Lubr. Technol. 1978;100:236–245. doi: 10.1115/1.3453152. DOI

Marx N., Guegan J., Spikes H.A. Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 2016;99:267–277. doi: 10.1016/j.triboint.2016.03.020. DOI

Johnson K.L. Regimes of Elastohydrodynamic Lubrication. J. Mech. Eng. Sci. 1970;12:9–16. doi: 10.1243/JMES_JOUR_1970_012_004_02. DOI

Esfahanian M., Hamrock B.J. Fluid-Film Lubrication Regimes Revisited. Tribol. Trans. 1991;34:628–632. doi: 10.1080/10402009108982081. DOI

Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Mokhtari A., Tala-Ighil N., Masmoudi Y.A. Nanoindentation to Determine Young’s Modulus for Thermoplastic Polymers. J. Mater. Eng. Perform. 2022;31:2715–2722. doi: 10.1007/s11665-021-06386-9. DOI

De Deus J.F., Souza G.P., Corradini W.A., Atvars T.D.Z., Akcelrud L. Relaxations of Poly(methyl methacrylate) Probed by Covalently Attached Anthryl Groups. Macromolecules. 2004;37:6938–6944. doi: 10.1021/ma049941c. DOI

De Vicente J., Stokes J.R., Spikes H.A. The Frictional Properties of Newtonian Fluids in Rolling–Sliding soft-EHL Contact. Tribol. Lett. 2005;20:273–286. doi: 10.1007/s11249-005-9067-3. DOI

Myant C., Spikes H.A., Stokes J.R. Influence of load and elastic properties on the rolling and sliding friction of lubricated compliant contacts. Tribol. Int. 2010;43:55–63. doi: 10.1016/j.triboint.2009.04.034. DOI

Fowell M.T., Myant C., Spikes H.A., Kadiric A. A study of lubricant film thickness in compliant contacts of elastomeric seal materials using a laser induced fluorescence technique. Tribol. Int. 2014;80:76–89. doi: 10.1016/j.triboint.2014.05.028. DOI

Jaffar M.J. Estimation of Minimum Thickness for Line Contacts in the Transition Region between the Isoviscous—Elastic and the Piezoviscous-Elastic Lubrication Regimes. Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci. 1989;203:379–386. doi: 10.1243/PIME_PROC_1989_203_131_02. DOI

Myers T.G., Hall R.W., Savage M.D., Gaskell P.H. The Transition Region of Elastohydrodynamic Lubrication. Proc. R. Soc. London A Math. Phys. Eng. Sci. 1991;432:467–479. doi: 10.1098/rspa.1991.0026. DOI

Putignano C., Dini D. Soft Matter Lubrication: Does Solid Viscoelasticity Matter? ACS Appl. Mater. Interfaces. 2017;9:42287–42295. doi: 10.1021/acsami.7b09381. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...