Viscoelastic Response of Elastohydrodynamically Lubricated Compliant Contacts below Glass-Transition Temperature
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-26849J
Czech Science Foundation
PubMed
37299326
PubMed Central
PMC10255053
DOI
10.3390/polym15112528
PII: polym15112528
Knihovny.cz E-resources
- Keywords
- compliant contact, elastohydrodynamic lubrication, fluid-film thickness, optical chromatic interferometry, transition region, viscoelastic behavior,
- Publication type
- Journal Article MeSH
The widespread use of polymers in the high-performance engineering applications brings challenges in the field of liquid lubrication in order to separate the rubbing surfaces by the coherent fluid-film thickness relative to not only the inelastic material response of the polymers. The determination of the mechanical properties by the nanoindentation and the dynamic mechanical analysis represents the key methodology to identify the viscoelastic behavior with respect to the intense frequency and temperature dependance exhibited by polymers. The fluid-film thickness was examined by the optical chromatic interferometry on the rotational tribometer in the ball-on-disc configuration. Based on the experiments performed, first, the complex modulus and the damping factor for the PMMA polymer describing the frequency and temperature dependence were obtained. Afterwards, the central as well as minimum fluid-film thickness were investigated. The results revealed the operation of the compliant circular contact in the transition region very close to the boundary between the Piezoviscous-elastic and Isoviscous-elastic modes of the elastohydrodynamic lubrication regime, and a significant deviation of the fluid-film thickness from the prediction models for both modes in dependence on the inlet temperature.
See more in PubMed
Gilbert M. Plastics Materials: Introduction and Historical Development. In: Gilbert M., editor. Brydson’s Plastics Materials. 8th ed. Elsevier; Amsterdam, The Netherlands: 2016. pp. 2–18.
Geyer R. Mare Plasticum—The Plastic Sea. Springer International Publishing; Cham, Switzerland: 2020. A Brief History of Plastics; pp. 31–47.
Dowson D. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. Volume 182. SAGE Publications; London, UK: 1967. Paper 10: Elastohydrodynamics; pp. 151–167. DOI
Greenwood J.A. An extension of the Grubin theory of elastohydrodynamic lubrication. J. Phys. D. Appl. Phys. 1972;5:309. doi: 10.1088/0022-3727/5/12/309. DOI
Hamrock B.J., Dowson D. Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results. J. Lubr. Technol. 1977;99:264–275. doi: 10.1115/1.3453074. DOI
Dowson D. Elastohydrodynamic and micro-elastohydrodynamic lubrication. Wear. 1995;190:125–138. doi: 10.1016/0043-1648(95)06660-8. DOI
Höglund E. Influence of lubricant properties on elastohydrodynamic lubrication. Wear. 1999;232:176–184. doi: 10.1016/S0043-1648(99)00143-X. DOI
Lugt P.M., Morales-Espejel G.E. A Review of Elasto-Hydrodynamic Lubrication Theory. Tribol. Trans. 2011;54:470–496. doi: 10.1080/10402004.2010.551804. DOI
Meidav T. Viscoelastic Properties of the Standard Linear Solid. Geophys. Prospect. 1964;12:80–99. doi: 10.1111/j.1365-2478.1964.tb01891.x. DOI
Chaudhri M. Impact breakage of semi-brittle spheres. Powder Technol. 2004;143–144:31–40. doi: 10.1016/j.powtec.2004.04.006. DOI
Harrass M., Friedrich K., Almajid A.A. Tribological behavior of selected engineering polymers under rolling contact. Tribol. Int. 2010;43:635–646. doi: 10.1016/j.triboint.2009.10.003. DOI
Friedrich K., Sue H.J., Liu P., Almajid A.A. Scratch resistance of high performance polymers. Tribol. Int. 2011;44:1032–1046. doi: 10.1016/j.triboint.2011.04.008. DOI
Ehret P., Dowson D., Taylor C.M. On lubricant transport conditions in elastohydrodynamic conjunctions. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998;454:763–787. doi: 10.1098/rspa.1998.0185. DOI
Krupka J., Dockal K., Krupka I., Hartl M. Elastohydrodynamic Lubrication of Compliant Circular Contacts near Glass-Transition Temperature. Lubricants. 2022;10:155. doi: 10.3390/lubricants10070155. DOI
Krupka J., Dockal K., Krupka I., Hartl M. Polymer Lubrication: Pressure–Viscosity–Temperature Dependence of Film Thickness for Highly Loaded Compliant Contacts in Elastohydrodynamic Lubrication Regime. J. Tribol. 2023;145:021601. doi: 10.1115/1.4055558. DOI
Hartl M., Krupka I., Poliscuk R., Liska M., Molimard J., Querry M., Vergne P. Thin film colorimetric interferometry. Tribol. Trans. 2001;44:270–276. doi: 10.1080/10402000108982458. DOI
Mathiesen D., Vogtmann D., Dupaix R.B. Characterization and constitutive modeling of stress-relaxation behavior of Poly(methyl methacrylate) (PMMA) across the glass transition temperature. Mech. Mater. 2014;71:74–84. doi: 10.1016/j.mechmat.2014.01.003. DOI
Hooke C.J. The Elastohydrodynamic Lubrication of Elliptical Point Contacts Operating in the Isoviscous Region. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1995;209:225–234. doi: 10.1243/PIME_PROC_1995_209_433_02. DOI
Hamrock B.J., Dowson D. Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus I—Fully Flooded Conjunction. J. Lubr. Technol. 1978;100:236–245. doi: 10.1115/1.3453152. DOI
Marx N., Guegan J., Spikes H.A. Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 2016;99:267–277. doi: 10.1016/j.triboint.2016.03.020. DOI
Johnson K.L. Regimes of Elastohydrodynamic Lubrication. J. Mech. Eng. Sci. 1970;12:9–16. doi: 10.1243/JMES_JOUR_1970_012_004_02. DOI
Esfahanian M., Hamrock B.J. Fluid-Film Lubrication Regimes Revisited. Tribol. Trans. 1991;34:628–632. doi: 10.1080/10402009108982081. DOI
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Mokhtari A., Tala-Ighil N., Masmoudi Y.A. Nanoindentation to Determine Young’s Modulus for Thermoplastic Polymers. J. Mater. Eng. Perform. 2022;31:2715–2722. doi: 10.1007/s11665-021-06386-9. DOI
De Deus J.F., Souza G.P., Corradini W.A., Atvars T.D.Z., Akcelrud L. Relaxations of Poly(methyl methacrylate) Probed by Covalently Attached Anthryl Groups. Macromolecules. 2004;37:6938–6944. doi: 10.1021/ma049941c. DOI
De Vicente J., Stokes J.R., Spikes H.A. The Frictional Properties of Newtonian Fluids in Rolling–Sliding soft-EHL Contact. Tribol. Lett. 2005;20:273–286. doi: 10.1007/s11249-005-9067-3. DOI
Myant C., Spikes H.A., Stokes J.R. Influence of load and elastic properties on the rolling and sliding friction of lubricated compliant contacts. Tribol. Int. 2010;43:55–63. doi: 10.1016/j.triboint.2009.04.034. DOI
Fowell M.T., Myant C., Spikes H.A., Kadiric A. A study of lubricant film thickness in compliant contacts of elastomeric seal materials using a laser induced fluorescence technique. Tribol. Int. 2014;80:76–89. doi: 10.1016/j.triboint.2014.05.028. DOI
Jaffar M.J. Estimation of Minimum Thickness for Line Contacts in the Transition Region between the Isoviscous—Elastic and the Piezoviscous-Elastic Lubrication Regimes. Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci. 1989;203:379–386. doi: 10.1243/PIME_PROC_1989_203_131_02. DOI
Myers T.G., Hall R.W., Savage M.D., Gaskell P.H. The Transition Region of Elastohydrodynamic Lubrication. Proc. R. Soc. London A Math. Phys. Eng. Sci. 1991;432:467–479. doi: 10.1098/rspa.1991.0026. DOI
Putignano C., Dini D. Soft Matter Lubrication: Does Solid Viscoelasticity Matter? ACS Appl. Mater. Interfaces. 2017;9:42287–42295. doi: 10.1021/acsami.7b09381. PubMed DOI