Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
13.151
SCIEX (CA)
PubMed
28721502
DOI
10.1007/s00248-017-1037-4
PII: 10.1007/s00248-017-1037-4
Knihovny.cz E-zdroje
- Klíčová slova
- Bifidobacterium, Cross-feeding, Eubacterium hallii, Mucin, Propionate,
- MeSH
- Bifidobacterium růst a vývoj izolace a purifikace metabolismus MeSH
- dospělí MeSH
- Eubacterium růst a vývoj izolace a purifikace metabolismus MeSH
- feces mikrobiologie MeSH
- fermentace MeSH
- kojenec MeSH
- kojení MeSH
- kyseliny mastné těkavé metabolismus MeSH
- lidé MeSH
- muciny metabolismus MeSH
- střeva mikrobiologie MeSH
- střevní mikroflóra MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny mastné těkavé MeSH
- muciny MeSH
Mucus production is initiated before birth and provides mucin glycans to the infant gut microbiota. Bifidobacteria are the major bacterial group in the feces of vaginally delivered and breast milk-fed infants. Among the bifidobacteria, only Bifidobacterium bifidum is able to degrade mucin and to release monosaccharides which can be used by other gut microbes colonizing the infant gut. Eubacterium hallii is an early occurring commensal that produces butyrate and propionate from fermentation metabolites but that cannot degrade complex oligo- and polysaccharides. We aimed to demonstrate that mucin cross-feeding initiated by B. bifidum enables growth and metabolite formation of E. hallii leading to short-chain fatty acid (SCFA) formation. Growth and metabolite formation of co-cultures of B. bifidum, of Bifidobacterium breve or Bifidobacterium infantis, which use mucin-derived hexoses and fucose, and of E. hallii were determined. Growth of E. hallii in the presence of lactose and mucin monosaccharides was tested. In co-culture fermentations, the presence of B. bifidum enabled growth of the other strains. B. bifidum/B. infantis co-cultures yielded acetate, formate, and lactate while co-cultures of B. bifidum and E. hallii formed acetate, formate, and butyrate. In three-strain co-cultures, B. bifidum, E. hallii, and B. breve or B. infantis produced up to 16 mM acetate, 5 mM formate, and 4 mM butyrate. The formation of propionate (approximately 1 mM) indicated cross-feeding on fucose. Lactose, galactose, and GlcNAc were identified as substrates of E. hallii. This study shows that trophic interactions of bifidobacteria and E. hallii lead to the formation of acetate, butyrate, propionate, and formate, potentially contributing to intestinal SCFA formation with potential benefits for the host and for microbial colonization of the infant gut. The ratios of SCFA formed differed depending on the microbial species involved in mucin cross-feeding.
Zobrazit více v PubMed
BMC Microbiol. 2014 Nov 25;14:282 PubMed
Environ Microbiol. 2017 Jan;19(1):29-41 PubMed
PLoS One. 2013;8(2):e57923 PubMed
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19514-9 PubMed
BMC Microbiol. 2015 Mar 01;15:54 PubMed
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18964-9 PubMed
Sci Rep. 2015 Oct 28;5:15782 PubMed
Front Microbiol. 2016 May 19;7:713 PubMed
Front Microbiol. 2017 Jan 30;8:95 PubMed
Microbiol Mol Biol Rev. 2004 Mar;68(1):132-53 PubMed
Gut Microbes. 2011 May-Jun;2(3):183-9 PubMed
FEMS Microbiol Lett. 2015 Jul;362(13):fnv092 PubMed
J Biol Chem. 2003 Nov 7;278(45):43885-8 PubMed
Nature. 2012 May 09;486(7402):222-7 PubMed
Int J Food Microbiol. 2017 Jan 16;241:225-236 PubMed
Appl Environ Microbiol. 2002 Oct;68(10):5186-90 PubMed
Immunol Rev. 2014 Jul;260(1):8-20 PubMed
Environ Microbiol. 2016 Jul;18(7):2246-58 PubMed
Nat Rev Microbiol. 2012 Apr 11;10(5):323-35 PubMed
Appl Environ Microbiol. 2008 Mar;74(6):1936-40 PubMed
BMC Genomics. 2008 Feb 08;9:75 PubMed
FEMS Microbiol Lett. 2011 Feb;315(2):141-8 PubMed
PLoS One. 2015 Feb 06;10(2):e0117912 PubMed
Appl Environ Microbiol. 2010 Nov;76(22):7373-81 PubMed
Appl Environ Microbiol. 2004 Jan;70(1):167-73 PubMed
BMC Microbiol. 2015 Jan 16;15:3 PubMed
Front Microbiol. 2014 Aug 21;5:437 PubMed
Curr Issues Intest Microbiol. 2003 Sep;4(2):71-5 PubMed
ISME J. 2014 Jun;8(6):1323-35 PubMed
FEMS Microbiol Ecol. 2014 Jan;87(1):30-40 PubMed
Microb Cell Fact. 2014 Aug 29;13 Suppl 1:S4 PubMed
Front Genet. 2015 Mar 19;6:81 PubMed
Appl Environ Microbiol. 2004 Oct;70(10):5810-7 PubMed
Ann N Y Acad Sci. 2008 Mar;1125:171-89 PubMed
BMC Microbiol. 2016 Oct 26;16(1):248 PubMed
J Clin Gastroenterol. 2006 Mar;40(3):235-43 PubMed
Appl Environ Microbiol. 2013 Jan;79(2):497-507 PubMed
Folia Microbiol (Praha). 2012 Jul;57(4):321-4 PubMed
J Biol Chem. 2010 Jul 16;285(29):22082-90 PubMed
J Pediatr Gastroenterol Nutr. 1994 Apr;18(3):321-6 PubMed
Appl Environ Microbiol. 2006 May;72(5):3593-9 PubMed
PLoS Pathog. 2015 Jul 30;11(7):e1004947 PubMed
Environ Microbiol. 2015 Jul;17(7):2515-31 PubMed
Nucleic Acids Res. 2015 Jan;43(Database issue):D593-8 PubMed
Nat Biotechnol. 2017 Jan;35(1):81-89 PubMed
J Bacteriol. 1967 Feb;93(2):574-6 PubMed
Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2141-6 PubMed