New Multilocus Sequence Typing Scheme for Enterococcus faecium Based on Whole Genome Sequencing Data
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37306567
PubMed Central
PMC10434285
DOI
10.1128/spectrum.05107-22
Knihovny.cz E-zdroje
- Klíčová slova
- Enterococcus faesium, clonal complex, epidemiology, multilocus sequence typing, whole genome sequenging,
- MeSH
- antibakteriální látky MeSH
- Enterococcus faecium * genetika MeSH
- grampozitivní bakteriální infekce * epidemiologie MeSH
- lidé MeSH
- multilokusová sekvenční typizace metody MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
The MLST scheme currently used for Enterococcus faecium typing was designed in 2002 and is based on putative gene functions and Enterococcus faecalis gene sequences available at that time. As a result, the original MLST scheme does not correspond to the real genetic relatedness of E. faecium strains and often clusters genetically distant strains to the same sequence types (ST). Nevertheless, typing has a significant impact on the subsequent epidemiological conclusions and introduction of appropriate epidemiological measures, thus it is crucial to use a more accurate MLST scheme. Based on the genome analysis of 1,843 E. faecium isolates, a new scheme, consisting of 8 highly discriminative loci, was created in this study. These strains were divided into 421 STs using the new MLST scheme, as opposed to 223 STs assigned by the original MLST scheme. The proposed MLST has a discriminatory power of D = 0.983 (CI95% 0.981 to 0.984), compared to the original scheme's D = 0.919 (CI95% 0.911 to 0.927). Moreover, we identified new clonal complexes with our newly designed MLST scheme. The scheme proposed here is available within the PubMLST database. Although whole genome sequencing availability has increased rapidly, MLST remains an integral part of clinical epidemiology, mainly due to its high standardization and excellent robustness. In this study, we proposed and validated a new MLST scheme for E. faecium, which is based on genome-wide data and thus reflects the tested isolates' more accurate genetic similarity. IMPORTANCE Enterococcus faecium is one of the most important pathogens causing health care associated infections. One of the main reasons for its clinical importance is a rapidly spreading resistance to vancomycin and linezolid, which significantly complicates antibiotic treatment of infections caused by such resistant strains. Monitoring the spread and relationships between resistant strains causing severe conditions represents an important tool for implementing appropriate preventive measures. Therefore, there is an urgent need to establish a robust method enabling strain monitoring and comparison at the local, national, and global level. Unfortunately, the current, extensively used MLST scheme does not reflect the real genetic relatedness between individual strains and thus does not provide sufficient discriminatory power. This can lead directly to incorrect epidemiological measures due to insufficient accuracy and biased results.
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Department of Clinical Microbiology and Immunology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Fiore E, Van Tyne D, Gilmore MS. 2019. Pathogenicity of enterococci. Microbiol Spectr 7:GPP3-0053-2018. doi: 10.1128/microbiolspec.GPP3-0053-2018. PubMed DOI PMC
Simar SR, Hanson BM, Arias CA. 2021. Techniques in bacterial strain typing: past, present, and future. Curr Opin Infect Dis 34:339–345. doi: 10.1097/QCO.0000000000000743. PubMed DOI PMC
Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ. 2002. Multilocus sequence typing scheme for PubMed DOI PMC
Raven KE, Reuter S, Reynolds R, Brodrick HJ, Russell JE, Török ME, Parkhill J, Peacock SJ. 2016. A decade of genomic history for healthcare-associated PubMed DOI PMC
Rios R, Reyes J, Carvajal LP, Rincon S, Panesso D, Echeverri AM, Dinh A, Kolokotronis SO, Narechania A, Tran TT, Munita JM, Murray BE, Planet PJ, Arias CA, Diaz L. 2020. Genomic epidemiology of vancomycin-resistant PubMed DOI PMC
van Hal SJ, Ip CLC, Ansari MA, Wilson DJ, Espedido BA, Jensen SO, Bowden R. 2016. Evolutionary dynamics of PubMed DOI PMC
Tong SY, Xie S, Richardson LJ, Ballard SA, Dakh F, Grabsch EA, Grayson ML, Howden BP, Johnson PD, Giffard PM. 2011. High-resolution melting genotyping of PubMed DOI PMC
de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, Brouwer E, Rogers M, Kraat Y, Bonten M, Corander J, Westh H, Harmsen D, Willems RJ. 2015. Core genome multilocus sequence typing scheme for high- resolution typing of PubMed DOI PMC
Higgs C, Sherry NL, Seemann T, Horan K, Walpola H, Kinsella P, Bond K, Williamson DA, Marshall C, Kwong JC, Grayson ML, Stinear TP, Gorrie CL, Howden BP. 2022. Optimising genomic approaches for identifying vancomycin-resistant PubMed DOI PMC
Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. doi: 10.12688/wellcomeopenres.14826.1. PubMed DOI PMC
Martin DP, Varsani A, Roumagnac P, Botha G, Maslamoney S, Schwab T, Kelz Z, Kumar V, Murrell B. 2021. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol 7:veaa087. doi: 10.1093/ve/veaa087. PubMed DOI PMC
Ranjbar R, Karami A, Farshad S, Giammanco GM, Mammina C. 2014. Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol 37:1–15. PubMed
Enright MC, Spratt BG. 1998. A multilocus sequence typing scheme for PubMed DOI
Suerbaum S, Lohrengel M, Sonnevend A, Ruberg F, Kist M. 2001. Allelic diversity and recombination in PubMed DOI PMC
Howden BP, Holt KE, Lam MM, Seemann T, Ballard S, Coombs GW, Tong SY, Grayson ML, Johnson PD, Stinear TP. 2013. Genomic insights to control the emergence of vancomycin-resistant enterococci. mBio 4:e00412-13. doi: 10.1128/mBio.00412-13. PubMed DOI PMC
Carter GP, Buultjens AH, Ballard SA, Baines SL, Tomita T, Strachan J, Johnson PD, Ferguson JK, Seemann T, Stinear TP, Howden BP. 2016. Emergence of endemic MLST non-typeable vancomycin-resistant PubMed DOI
Fang H, Fröding I, Ullberg M, Giske CG. 2021. Genomic analysis revealed distinct transmission clusters of vancomycin-resistant PubMed DOI
Dyrkell F, Giske CG, Fang H. 2021. Epidemiological typing of ST80 vancomycin-resistant PubMed DOI
Weber A, Maechler F, Schwab F, Gastmeier P, Kola A. 2020. Increase of vancomycin-resistant PubMed DOI PMC
Lemonidis K, Salih TS, Dancer SJ, Hunter IS, Tucker NP. 2019. Emergence of an Australian-like pstS-null vancomycin resistant PubMed DOI PMC
Pinholt M, Gumpert H, Bayliss S, Nielsen JB, Vorobieva V, Pedersen M, Feil E, Worning P, Westh H. 2017. Genomic analysis of 495 vancomycin-resistant PubMed DOI
Werner A, Mölling P, Fagerström A, Dyrkell F, Arnellos D, Johansson K, Sundqvist M, Norén T. 2020. Whole genome sequencing of PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC
Wan TW, Yeo HH, Lee TF, Huang YT, Hsueh PR, Chiu HC. 2023. Molecular epidemiology of bacteraemic vancomycin-resistant PubMed DOI
Yan MY, He YH, Ruan GJ, Xue F, Zheng B, Lv Y. 2023. The prevalence and molecular epidemiology of vancomycin-resistant PubMed DOI
Cherak Z, Bendjama E, Moussi A, Benbouza A, Grainat N, Rolain JM, Loucif L. 2022. First detection of vanA positive PubMed DOI PMC
Wardal E, Żabicka D, Hryniewicz W, Sadowy E. 2022. VanA- PubMed DOI PMC
Liu S, Li Y, He Z, Wang Y, Wang J, Jin D. 2022. A molecular study regarding the spread of vanA vancomycin-resistant PubMed DOI
Trautmannsberger I, Kolberg L, Meyer-Buehn M, Huebner J, Werner G, Weber R, Heselich V, Schroepf S, Muench HG, von Both U. 2022. Epidemiological and genetic characteristics of vancomycin-resistant PubMed DOI PMC
Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530. doi: 10.1128/JB.186.5.1518-1530.2004. PubMed DOI PMC
Khan MA, Northwood JB, Loor RG, Tholen AT, Riera E, Falcón M, van Belkum A, van Westreenen M, Hays JP, Paraguayan Antimicrobial Network . 2010. High prevalence of ST-78 infection-associated vancomycin-resistant PubMed DOI
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP, 1000 Genome Project Data Processing Subgroup . 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, Mellmann A, Goesmann A, von Haeseler A, Stoye J, Harmsen D. 2013. Updating benchtop sequencing performance comparison. Nat Biotechnol 31:294–296. doi: 10.1038/nbt.2522. PubMed DOI
The Math Works I. 2020. MATLAB, v2020a. The Math Works, Inc., https://www.mathworks.com/. Accessed 11 June 2021.
Kõressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M. 2018. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34:1937–1938. doi: 10.1093/bioinformatics/bty036. PubMed DOI
Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA, Vaz C. 2017. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 33:128–129. doi: 10.1093/bioinformatics/btw582. PubMed DOI
Hunter PR, Gaston MA. 1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26:2465–2466. doi: 10.1128/jcm.26.11.2465-2466.1988. PubMed DOI PMC
Severiano A, Pinto FR, Ramirez M, Carriço JA. 2011. Adjusted Wallace coefficient as a measure of congruence between typing methods. J Clin Microbiol 49:3997–4000. doi: 10.1128/JCM.00624-11. PubMed DOI PMC
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. doi: 10.1093/nar/gky1085. PubMed DOI PMC
Genomic insights into the spread of vancomycin- and tigecycline-resistant Enterococcus faecium ST117