Genomic insights into the spread of vancomycin- and tigecycline-resistant Enterococcus faecium ST117

. 2025 Jun 11 ; 24 (1) : 36. [epub] 20250611

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40500694

Grantová podpora
No 197323 Univerzita Karlova v Praze
LX22NPO5103 European Commission
00064203 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 40500694
PubMed Central PMC12153105
DOI 10.1186/s12941-025-00806-7
PII: 10.1186/s12941-025-00806-7
Knihovny.cz E-zdroje

BACKGROUND: Since the incidence of vancomycin-resistant enterococci (VRE) is increasing and treatment options remain limited, we aimed to investigate the epidemiology of vancomycin- and tigecycline-resistant enterococci in a university hospital using whole genome sequencing (WGS). METHODS: Between April and December 2021, 102 VRE isolates were collected from a single tertiary care hospital in the Czech Republic. Forty selected isolates underwent antimicrobial susceptibility testing and WGS (Illumina short reads and long reads with MinION in selected isolates). RESULTS: All Enterococcus faecium isolates were resistant to ampicillin, carrying the PBP5_Met485Ala, PBP5_Glu629Val, and fluoroquinolones carrying the GyrA_Ser83Ile and ParC_Ser80Ile substitutions. The vanA operon was found on pELF2-like plasmids and plasmids carrying rep17 and/or rep18b genes. The novel Tn1546 structural variants were identified in vanA-carrying isolates. The vanB operon was located on the chromosome within a Tn1549 structural variant. Linezolid resistance was detected in one isolate carrying the 23S rDNA_G2576T substitution. Twenty-two isolates were resistant to tigecycline (tet(L), tet(M) and rpsJ_del 155-166 or RpsJ_Lys57Arg). Discrepancies between phenotypic and genotypic resistance profiles were observed for daptomycin (RpoB_Ser491Phe), trimethoprim/sulfamethoxazole (dfrG gene), nitrofurantoin (NmrA_Gln48Lys substitution without the EF0404 and EF0648 genes) and tetracycline (truncated TetM). The two multilocus sequence typing (MLST) schemes identified different numbers of STs: 5 STs, with ST117 as the predominant one (n = 32, 80%), versus 10 STs, with ST138 (27.5%), ST136 (25%), and ST1067 (20%) being the most frequent, respectively. The whole genome MLST revealed clonal clustering (0-7 allele differences) among isolates of the same ST. When comparing ST117 isolates from our study with 2,204 ST117 isolates from 15 countries, only one Czech isolate clustered closely with strains from Germany and the Netherlands, differing by just 16 alleles. CONCLUSIONS: The spread of E. faecium isolates ST117 resistant to vancomycin and tigecycline was identified. The discrepancies between resistance genotypes and phenotypes highlight the importance of combining molecular and phenotypic surveillance in antimicrobial resistance monitoring.

Zobrazit více v PubMed

WHO Bacterial Priority Pathogens List. 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.

Antimicrobial resistance surveillance in Europe 2023– 2021 data. Stockholm: European Centre for Disease Prevention and Control and World Health Organization. 2023. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris

Arias CA, Murray BE. The rise of the enterococcus: beyond Vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–78. 10.1038/nrmicro2761. PubMed PMC

Ahmed MO, Baptiste KE, Vancomycin-Resistant Enterococci. A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 2018;24(5):590–606. 10.1089/mdr.2017.0147. PubMed

Gorrie C, Higgs C, Carter G, Stinear TP, Howden B. Genomics of vancomycin-resistant Enterococcus faecium. Microb Genom. 2019;5(7):e000283. 10.1099/mgen.0.000283. PubMed PMC

van Hal SJ, Ip CLC, Ansari MA, Wilson DJ, Espedido BA, Jensen SO, Bowden R. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of Vancomycin resistance. Microb Genom. 2016;2(1):e000048. 10.1099/mgen.0.000048. PubMed PMC

Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C, Peixe L, Sánchez-Valenzuela A, Sundsfjord A, Hegstad K, Werner G, Sadowy E, Hammerum AM, Garcia-Migura L, Willems RJ, Baquero F, Coque TM. Multilevel population genetic analysis of VanA and VanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). J Antimicrob Chemother. 2016;71(12):3351–66. 10.1093/jac/dkw312. PubMed

Islam M, Sharon B, Abaragu A, Sistu H, Akins RL, Palmer K. Vancomycin resistance in Enterococcus faecium from the dallas, texas, area is conferred predominantly on pRUM-Like plasmids. mSphere. 2023;8(2):e0002423. 10.1128/msphere.00024-23. PubMed PMC

Hashimoto Y, Suzuki M, Kobayashi S, Hirahara Y, Kurushima J, Hirakawa H, Nomura T, Tanimoto K, Tomita H. Enterococcal linear plasmids adapt to Enterococcus faecium and spread within Multidrug-Resistant clades. Antimicrob Agents Chemother. 2023;67(4):e0161922. 10.1128/aac.01619-22. PubMed PMC

Klare I, Fleige C, Geringer U, Thürmer A, Bender J, Mutters NT, Mischnik A, Werner G. Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. J Glob Antimicrob Resist. 2015;3(2):128–31. 10.1016/j.jgar.2015.02.007. PubMed

Bender JK, Cattoir V, Hegstad K, Sadowy E, Coque TM, Westh H, Hammerum AM, Schaffer K, Burns K, Murchan S, Novais C, Freitas AR, Peixe L, Del Grosso M, Pantosti A, Werner G. Update on prevalence and mechanisms of resistance to linezolid, Tigecycline and daptomycin in enterococci in europe: towards a common nomenclature. Drug Resist Updat. 2018;40:25–39. 10.1016/j.drup.2018.10.002. PubMed

Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded Tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother. 2016;71(4):871–81. 10.1093/jac/dkv420. PubMed

Niebel M, Quick J, Prieto AM, Hill RL, Pike R, Huber D, David M, Hornsey M, Wareham D, Oppenheim B, Woodford N, van Schaik W, Loman N. Deletions in a ribosomal protein-coding gene are associated with Tigecycline resistance in Enterococcus faecium. Int J Antimicrob Agents. 2015;46(5):572–5. 10.1016/j.ijantimicag.2015.07.009. PubMed

Diaz L, Tran TT, Munita JM, Miller WR, Rincon S, Carvajal LP, Wollam A, Reyes J, Panesso D, Rojas NL, Shamoo Y, Murray BE, Weinstock GM, Arias CA. Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin mics. Antimicrob Agents Chemother. 2014;58(8):4527–34. 10.1128/AAC.02686-14. PubMed PMC

Turner AM, Li L, Monk IR, Lee JYH, Ingle DJ, Portelli S, Sherry NL, Isles N, Seemann T, Sharkey LK, Walsh CJ, Reid GE, Nie S, Eijkelkamp BA, Holmes NE, Collis B, Vogrin S, Hiergeist A, Weber D, Gessner A, Holler E, Ascher DB, Duchene S, Scott NE, Stinear TP, Kwong JC, Gorrie CL, Howden BP, Carter GP. Rifaximin prophylaxis causes resistance to the last-resort antibiotic daptomycin. Nature. 2024;635(8040):969–77. 10.1038/s41586-024-08095-4. PubMed PMC

The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 12.0. 2022. https://www.eucast.org/clinical_breakpoints

Bortolaia V, Kaas RF, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AR, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykasenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. (2020). ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. 10.1093/jac/dkaa345 PubMed PMC

Hasman H, Clausen PTLC, Kaya H, Hansen F, Knudsen JD, Wang M, Holzknecht BJ, Samulioniené J, Røder BL, Frimodt-Møller N, Lund O, Hammerum AM. LRE-Finder, a web tool for detection of the 23S rRNA mutations and the optra, cfr, cfr(B) and PoxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. J Antimicrob Chemother. 2019;74(6):1473–6. 10.1093/jac/dkz092. PubMed

Bender JK, Klare I, Fleige C, Werner G. A nosocomial cluster of Tigecycline- and Vancomycin-Resistant Enterococcus faecium isolates and the impact of RpsJ and tet(M) mutations on Tigecycline resistance. Microb Drug Resist. 2020;26(6):576–82. 10.1089/mdr.2019.0346. PubMed

Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics. 2018;19(1):307. Journal of Antimicrobial Chemotherapy, 75(12),3491–3500. PubMed PMC

Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol. 2002;40(6):1963–71. 10.1128/JCM.40.6.1963-1971.2002. PubMed PMC

Bezdicek M, Hanslikova J, Nykrynova M, Dufkova K, Kocmanova I, Kubackova P, Mayer J, Lengerova M. New multilocus sequence typing scheme for Enterococcus faecium based on whole genome sequencing data. Microbiol Spectr. 2023;11(4):e0510722. 10.1128/spectrum.05107-22. PubMed PMC

Public databases for molecular. typing and microbial genome diversity. https://pubmlst.org/. Accessed 12 February 2024.

de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, Brouwer E, Rogers M, Kraat Y, Bonten M, Corander J, Westh H, Harmsen D, Willems RJ. Core genome multilocus sequence typing scheme for High- resolution typing of Enterococcus faecium. J Clin Microbiol. 2015;53(12):3788–97. 10.1128/JCM.01946-15. PubMed PMC

Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52(W1):W78–82. 10.1093/nar/gkae268. PubMed PMC

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6. 10.1038/s41587-019-0072-8. PubMed

Medaka. https://github.com/nanoporetech/medaka. Accessed 4 December 2024.

Wick RR, Holt KE, Polypolish. Short-read Polishing of long-read bacterial genome assemblies. PLoS Comput Biol. 2022;18(1):e1009802. 10.1371/journal.pcbi.1009802. PubMed PMC

Bouras G, Sheppard AE, Mallawaarachchi V, Vreugde S. Plassembler: an automated bacterial plasmid assembly tool. Bioinformatics. 2023;39(7):btad409. 10.1093/bioinformatics/btad409. PubMed PMC

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA 3rd, Stevens R, Vonstein V, Wattam AR, Xia F. RASTtk: a modular and extensible implementation of the RAST algorithm for Building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365. 10.1038/srep08365. PubMed PMC

Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10. 10.1093/bioinformatics/btr039. PubMed PMC

Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993;175(1):117–27. 10.1128/jb.175.1.117-127.1993. PubMed PMC

Garnier F, Taourit S, Glaser P, Courvalin P, Galimand M. Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiol (Reading). 2000;146(Pt 6):1481–9. 10.1099/00221287-146-6-1481. PubMed

Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Database issue):D32–6. 10.1093/nar/gkj014. PubMed PMC

Li P, Xu Q, Ding L, Zhang X, Li D, Wang L, Xu X, Lin D, Wang M. Q48K mutation in the type IB nitroreductase NrmA is responsible for Nitrofurantoin resistance in Enterococcus faecium. Int J Antimicrob Agents. 2024;64(3):107277. 10.1016/j.ijantimicag.2024.107277. PubMed

Zhang Y, Wang L, Zhou C, Lin Y, Liu S, Zeng W, Yu K, Zhou T, Cao J. Unraveling mechanisms and epidemic characteristics of Nitrofurantoin resistance in uropathogenic Enterococcus faecium clinical isolates. Infect Drug Resist. 2021;14:1601–11. 10.2147/IDR.S301802. PubMed PMC

Mališová L, Jakubů V, Pomorská K, Musílek M, Žemličková H. Spread of Linezolid-Resistant Enterococcus spp. In human clinical isolates In the Czech Republic. Antibiot (Basel). 2021;10(2):219. 10.3390/antibiotics10020219. PubMed PMC

Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 2006;60:561–88. 10.1146/annurev.micro.59.030804.121325. PubMed

Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–61. 10.1128/JCM.06094-11. PubMed PMC

Raven KE, Reuter S, Reynolds R, Brodrick HJ, Russell JE, Török ME, Parkhill J, Peacock SJ. A decade of genomic history for healthcare-associated Enterococcus faecium in the united Kingdom and Ireland. Genome Res. 2016;26(10):1388–96. 10.1101/gr.204024.116. PubMed PMC

Karino M, Yanagihara M, Harada T, Sugo M, Karino M, Ohtaki H, Hanada H, Takano T, Yamato M, Okamoto S. New multilocus sequence typing scheme for Enterococcus faecium reveals sequential outbreaks of vancomycin-resistant E. faecium ST1162 and ST610 in a Japanese tertiary medical center. Microbiol Spectr. 2025;13(1):e0213124. 10.1128/spectrum.02131-24. PubMed PMC

Egan SA, Kavanagh NL, Shore AC, Mollerup S, Samaniego Castruita JA, O’Connell B, McManus BA, Brennan GI, Pinholt M, Westh H, Coleman DC. Genomic analysis of 600 vancomycin-resistant Enterococcus faecium reveals a high prevalence of ST80 and spread of similar VanA regions via IS1216E and plasmid transfer in diverse genetic lineages in Ireland. J Antimicrob Chemother. 2022;77(2):320–30. 10.1093/jac/dkab393. PubMed PMC

Hammerum AM, Karstensen KT, Roer L, Kaya H, Lindegaard M, Porsbo LJ, Kjerulf A, Pinholt M, Holzknecht BJ, Worning P, Nielsen KL, Hansen SGK, Clausen M, Søndergaard TS, Dzajic E, Østergaard C, Wang M, Koch K, Hasman H. Surveillance of vancomycin-resistant enterococci reveals shift in dominating clusters from VanA to VanB Enterococcus faecium clusters, denmark, 2015 to 2022. Euro Surveill. 2024;29(23):2300633. 10.2807/1560-7917.ES.2024.29.23.2300633. PubMed PMC

Xanthopoulou K, Peter S, Tobys D, Behnke M, Dinkelacker AG, Eisenbeis S, Falgenhauer J, Falgenhauer L, Fritzenwanker M, Gölz H, Häcker G, Higgins PG, Imirzalioglu C, Käding N, Kern WV, Kramme E, Kola A, Mischnik A, Rieg S, Rohde AM, Rupp J, Tacconelli E, Vehreschild MJGT, Walker SV, Gastmeier P, Seifert H. DZIF R-Net study group. Vancomycin-resistant Enterococcus faecium colonizing patients on hospital admission in germany: prevalence and molecular epidemiology. J Antimicrob Chemother. 2020;75(10):2743–51. 10.1093/jac/dkaa271. PubMed

Oravcova V, Kolar M, Literak I. Highly variable vancomycin-resistant enterococci in the north-eastern part of the Czech Republic. Lett Appl Microbiol. 2019;69(1):16–22. 10.1111/lam.13121. PubMed

Greig DR, Dallman TJ, Hopkins KL, Jenkins C. MinION nanopore sequencing identifies the position and structure of bacterial antibiotic resistance determinants in a multidrug-resistant strain of enteroaggregative Escherichia coli. Microb Genom. 2018;4(10):e000213. 10.1099/mgen.0.000213. PubMed PMC

Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES, Clark TA, Luong K, Song Y, Tsai YC, Boitano M, Dayal J, Brooks SY, Schmidt B, Young AC, Thomas JW, Bouffard GG, Blakesley RW, NISC Comparative Sequencing Program, Mullikin JC, Korlach J, Henderson DK, Frank KM, Palmore TN, Segre JA. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6(254):254ra126. 10.1126/scitranslmed.3009845. PubMed PMC

The Transposon Registry. https://transposon.lstmed.ac.uk/tn-registry. Accessed 10 December 2024.

Matrat L, Plaisant F, Barreto C, Claris O, Butin M. Increasing use of linezolid in a tertiary NICU during a 10-year period: reasons and concerns for the future. Antimicrob Resist Infect Control. 2020;9(1):156. 10.1186/s13756-020-00818-2. PubMed PMC

Olearo F, Both A, Belmar Campos C, Hilgarth H, Klupp EM, Hansen JL, Maurer FP, Christner M, Aepfelbacher M, Rohde H. Emergence of linezolid-resistance in vancomycin-resistant Enterococcus faecium ST117 associated with increased linezolid-consumption. Int J Med Microbiol. 2021;311(2):151477. 10.1016/j.ijmm.2021.151477. PubMed

Minato Y, Dawadi S, Kordus SL, Sivanandam A, Aldrich CC, Baughn AD. Mutual potentiation drives synergy between Trimethoprim and sulfamethoxazole. Nat Commun. 2018;9(1):1003. 10.1038/s41467-018-03447-x. PubMed PMC

Wisell KT, Kahlmeter G, Giske CG. Trimethoprim and enterococci in urinary tract infections: new perspectives on an old issue. J Antimicrob Chemother. 2008;62(1):35–40. 10.1093/jac/dkn147. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...