Genomic insights into the spread of vancomycin- and tigecycline-resistant Enterococcus faecium ST117
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No 197323
Univerzita Karlova v Praze
LX22NPO5103
European Commission
00064203
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
40500694
PubMed Central
PMC12153105
DOI
10.1186/s12941-025-00806-7
PII: 10.1186/s12941-025-00806-7
Knihovny.cz E-zdroje
- Klíčová slova
- Daptomycin, Long-read sequencing, Plasmids, Structural variants, Whole-genome sequencing, antimicrobial resistance,
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální proteiny genetika MeSH
- Enterococcus faecium * genetika účinky léků izolace a purifikace klasifikace MeSH
- enterokoky rezistentní vůči vankomycinu * genetika účinky léků izolace a purifikace MeSH
- genom bakteriální MeSH
- grampozitivní bakteriální infekce * mikrobiologie epidemiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- multilokusová sekvenční typizace MeSH
- rezistence na vankomycin genetika MeSH
- sekvenování celého genomu MeSH
- tigecyklin * farmakologie MeSH
- vankomycin * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky * MeSH
- bakteriální proteiny MeSH
- tigecyklin * MeSH
- vankomycin * MeSH
BACKGROUND: Since the incidence of vancomycin-resistant enterococci (VRE) is increasing and treatment options remain limited, we aimed to investigate the epidemiology of vancomycin- and tigecycline-resistant enterococci in a university hospital using whole genome sequencing (WGS). METHODS: Between April and December 2021, 102 VRE isolates were collected from a single tertiary care hospital in the Czech Republic. Forty selected isolates underwent antimicrobial susceptibility testing and WGS (Illumina short reads and long reads with MinION in selected isolates). RESULTS: All Enterococcus faecium isolates were resistant to ampicillin, carrying the PBP5_Met485Ala, PBP5_Glu629Val, and fluoroquinolones carrying the GyrA_Ser83Ile and ParC_Ser80Ile substitutions. The vanA operon was found on pELF2-like plasmids and plasmids carrying rep17 and/or rep18b genes. The novel Tn1546 structural variants were identified in vanA-carrying isolates. The vanB operon was located on the chromosome within a Tn1549 structural variant. Linezolid resistance was detected in one isolate carrying the 23S rDNA_G2576T substitution. Twenty-two isolates were resistant to tigecycline (tet(L), tet(M) and rpsJ_del 155-166 or RpsJ_Lys57Arg). Discrepancies between phenotypic and genotypic resistance profiles were observed for daptomycin (RpoB_Ser491Phe), trimethoprim/sulfamethoxazole (dfrG gene), nitrofurantoin (NmrA_Gln48Lys substitution without the EF0404 and EF0648 genes) and tetracycline (truncated TetM). The two multilocus sequence typing (MLST) schemes identified different numbers of STs: 5 STs, with ST117 as the predominant one (n = 32, 80%), versus 10 STs, with ST138 (27.5%), ST136 (25%), and ST1067 (20%) being the most frequent, respectively. The whole genome MLST revealed clonal clustering (0-7 allele differences) among isolates of the same ST. When comparing ST117 isolates from our study with 2,204 ST117 isolates from 15 countries, only one Czech isolate clustered closely with strains from Germany and the Netherlands, differing by just 16 alleles. CONCLUSIONS: The spread of E. faecium isolates ST117 resistant to vancomycin and tigecycline was identified. The discrepancies between resistance genotypes and phenotypes highlight the importance of combining molecular and phenotypic surveillance in antimicrobial resistance monitoring.
Zobrazit více v PubMed
WHO Bacterial Priority Pathogens List. 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.
Antimicrobial resistance surveillance in Europe 2023– 2021 data. Stockholm: European Centre for Disease Prevention and Control and World Health Organization. 2023. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris
Arias CA, Murray BE. The rise of the enterococcus: beyond Vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–78. 10.1038/nrmicro2761. PubMed PMC
Ahmed MO, Baptiste KE, Vancomycin-Resistant Enterococci. A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 2018;24(5):590–606. 10.1089/mdr.2017.0147. PubMed
Gorrie C, Higgs C, Carter G, Stinear TP, Howden B. Genomics of vancomycin-resistant Enterococcus faecium. Microb Genom. 2019;5(7):e000283. 10.1099/mgen.0.000283. PubMed PMC
van Hal SJ, Ip CLC, Ansari MA, Wilson DJ, Espedido BA, Jensen SO, Bowden R. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of Vancomycin resistance. Microb Genom. 2016;2(1):e000048. 10.1099/mgen.0.000048. PubMed PMC
Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C, Peixe L, Sánchez-Valenzuela A, Sundsfjord A, Hegstad K, Werner G, Sadowy E, Hammerum AM, Garcia-Migura L, Willems RJ, Baquero F, Coque TM. Multilevel population genetic analysis of VanA and VanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). J Antimicrob Chemother. 2016;71(12):3351–66. 10.1093/jac/dkw312. PubMed
Islam M, Sharon B, Abaragu A, Sistu H, Akins RL, Palmer K. Vancomycin resistance in Enterococcus faecium from the dallas, texas, area is conferred predominantly on pRUM-Like plasmids. mSphere. 2023;8(2):e0002423. 10.1128/msphere.00024-23. PubMed PMC
Hashimoto Y, Suzuki M, Kobayashi S, Hirahara Y, Kurushima J, Hirakawa H, Nomura T, Tanimoto K, Tomita H. Enterococcal linear plasmids adapt to Enterococcus faecium and spread within Multidrug-Resistant clades. Antimicrob Agents Chemother. 2023;67(4):e0161922. 10.1128/aac.01619-22. PubMed PMC
Klare I, Fleige C, Geringer U, Thürmer A, Bender J, Mutters NT, Mischnik A, Werner G. Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. J Glob Antimicrob Resist. 2015;3(2):128–31. 10.1016/j.jgar.2015.02.007. PubMed
Bender JK, Cattoir V, Hegstad K, Sadowy E, Coque TM, Westh H, Hammerum AM, Schaffer K, Burns K, Murchan S, Novais C, Freitas AR, Peixe L, Del Grosso M, Pantosti A, Werner G. Update on prevalence and mechanisms of resistance to linezolid, Tigecycline and daptomycin in enterococci in europe: towards a common nomenclature. Drug Resist Updat. 2018;40:25–39. 10.1016/j.drup.2018.10.002. PubMed
Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded Tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother. 2016;71(4):871–81. 10.1093/jac/dkv420. PubMed
Niebel M, Quick J, Prieto AM, Hill RL, Pike R, Huber D, David M, Hornsey M, Wareham D, Oppenheim B, Woodford N, van Schaik W, Loman N. Deletions in a ribosomal protein-coding gene are associated with Tigecycline resistance in Enterococcus faecium. Int J Antimicrob Agents. 2015;46(5):572–5. 10.1016/j.ijantimicag.2015.07.009. PubMed
Diaz L, Tran TT, Munita JM, Miller WR, Rincon S, Carvajal LP, Wollam A, Reyes J, Panesso D, Rojas NL, Shamoo Y, Murray BE, Weinstock GM, Arias CA. Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin mics. Antimicrob Agents Chemother. 2014;58(8):4527–34. 10.1128/AAC.02686-14. PubMed PMC
Turner AM, Li L, Monk IR, Lee JYH, Ingle DJ, Portelli S, Sherry NL, Isles N, Seemann T, Sharkey LK, Walsh CJ, Reid GE, Nie S, Eijkelkamp BA, Holmes NE, Collis B, Vogrin S, Hiergeist A, Weber D, Gessner A, Holler E, Ascher DB, Duchene S, Scott NE, Stinear TP, Kwong JC, Gorrie CL, Howden BP, Carter GP. Rifaximin prophylaxis causes resistance to the last-resort antibiotic daptomycin. Nature. 2024;635(8040):969–77. 10.1038/s41586-024-08095-4. PubMed PMC
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 12.0. 2022. https://www.eucast.org/clinical_breakpoints
Bortolaia V, Kaas RF, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AR, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykasenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. (2020). ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. 10.1093/jac/dkaa345 PubMed PMC
Hasman H, Clausen PTLC, Kaya H, Hansen F, Knudsen JD, Wang M, Holzknecht BJ, Samulioniené J, Røder BL, Frimodt-Møller N, Lund O, Hammerum AM. LRE-Finder, a web tool for detection of the 23S rRNA mutations and the optra, cfr, cfr(B) and PoxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. J Antimicrob Chemother. 2019;74(6):1473–6. 10.1093/jac/dkz092. PubMed
Bender JK, Klare I, Fleige C, Werner G. A nosocomial cluster of Tigecycline- and Vancomycin-Resistant Enterococcus faecium isolates and the impact of RpsJ and tet(M) mutations on Tigecycline resistance. Microb Drug Resist. 2020;26(6):576–82. 10.1089/mdr.2019.0346. PubMed
Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics. 2018;19(1):307. Journal of Antimicrobial Chemotherapy, 75(12),3491–3500. PubMed PMC
Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol. 2002;40(6):1963–71. 10.1128/JCM.40.6.1963-1971.2002. PubMed PMC
Bezdicek M, Hanslikova J, Nykrynova M, Dufkova K, Kocmanova I, Kubackova P, Mayer J, Lengerova M. New multilocus sequence typing scheme for Enterococcus faecium based on whole genome sequencing data. Microbiol Spectr. 2023;11(4):e0510722. 10.1128/spectrum.05107-22. PubMed PMC
Public databases for molecular. typing and microbial genome diversity. https://pubmlst.org/. Accessed 12 February 2024.
de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, Brouwer E, Rogers M, Kraat Y, Bonten M, Corander J, Westh H, Harmsen D, Willems RJ. Core genome multilocus sequence typing scheme for High- resolution typing of Enterococcus faecium. J Clin Microbiol. 2015;53(12):3788–97. 10.1128/JCM.01946-15. PubMed PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52(W1):W78–82. 10.1093/nar/gkae268. PubMed PMC
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6. 10.1038/s41587-019-0072-8. PubMed
Medaka. https://github.com/nanoporetech/medaka. Accessed 4 December 2024.
Wick RR, Holt KE, Polypolish. Short-read Polishing of long-read bacterial genome assemblies. PLoS Comput Biol. 2022;18(1):e1009802. 10.1371/journal.pcbi.1009802. PubMed PMC
Bouras G, Sheppard AE, Mallawaarachchi V, Vreugde S. Plassembler: an automated bacterial plasmid assembly tool. Bioinformatics. 2023;39(7):btad409. 10.1093/bioinformatics/btad409. PubMed PMC
Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA 3rd, Stevens R, Vonstein V, Wattam AR, Xia F. RASTtk: a modular and extensible implementation of the RAST algorithm for Building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365. 10.1038/srep08365. PubMed PMC
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10. 10.1093/bioinformatics/btr039. PubMed PMC
Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993;175(1):117–27. 10.1128/jb.175.1.117-127.1993. PubMed PMC
Garnier F, Taourit S, Glaser P, Courvalin P, Galimand M. Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiol (Reading). 2000;146(Pt 6):1481–9. 10.1099/00221287-146-6-1481. PubMed
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Database issue):D32–6. 10.1093/nar/gkj014. PubMed PMC
Li P, Xu Q, Ding L, Zhang X, Li D, Wang L, Xu X, Lin D, Wang M. Q48K mutation in the type IB nitroreductase NrmA is responsible for Nitrofurantoin resistance in Enterococcus faecium. Int J Antimicrob Agents. 2024;64(3):107277. 10.1016/j.ijantimicag.2024.107277. PubMed
Zhang Y, Wang L, Zhou C, Lin Y, Liu S, Zeng W, Yu K, Zhou T, Cao J. Unraveling mechanisms and epidemic characteristics of Nitrofurantoin resistance in uropathogenic Enterococcus faecium clinical isolates. Infect Drug Resist. 2021;14:1601–11. 10.2147/IDR.S301802. PubMed PMC
Mališová L, Jakubů V, Pomorská K, Musílek M, Žemličková H. Spread of Linezolid-Resistant Enterococcus spp. In human clinical isolates In the Czech Republic. Antibiot (Basel). 2021;10(2):219. 10.3390/antibiotics10020219. PubMed PMC
Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 2006;60:561–88. 10.1146/annurev.micro.59.030804.121325. PubMed
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–61. 10.1128/JCM.06094-11. PubMed PMC
Raven KE, Reuter S, Reynolds R, Brodrick HJ, Russell JE, Török ME, Parkhill J, Peacock SJ. A decade of genomic history for healthcare-associated Enterococcus faecium in the united Kingdom and Ireland. Genome Res. 2016;26(10):1388–96. 10.1101/gr.204024.116. PubMed PMC
Karino M, Yanagihara M, Harada T, Sugo M, Karino M, Ohtaki H, Hanada H, Takano T, Yamato M, Okamoto S. New multilocus sequence typing scheme for Enterococcus faecium reveals sequential outbreaks of vancomycin-resistant E. faecium ST1162 and ST610 in a Japanese tertiary medical center. Microbiol Spectr. 2025;13(1):e0213124. 10.1128/spectrum.02131-24. PubMed PMC
Egan SA, Kavanagh NL, Shore AC, Mollerup S, Samaniego Castruita JA, O’Connell B, McManus BA, Brennan GI, Pinholt M, Westh H, Coleman DC. Genomic analysis of 600 vancomycin-resistant Enterococcus faecium reveals a high prevalence of ST80 and spread of similar VanA regions via IS1216E and plasmid transfer in diverse genetic lineages in Ireland. J Antimicrob Chemother. 2022;77(2):320–30. 10.1093/jac/dkab393. PubMed PMC
Hammerum AM, Karstensen KT, Roer L, Kaya H, Lindegaard M, Porsbo LJ, Kjerulf A, Pinholt M, Holzknecht BJ, Worning P, Nielsen KL, Hansen SGK, Clausen M, Søndergaard TS, Dzajic E, Østergaard C, Wang M, Koch K, Hasman H. Surveillance of vancomycin-resistant enterococci reveals shift in dominating clusters from VanA to VanB Enterococcus faecium clusters, denmark, 2015 to 2022. Euro Surveill. 2024;29(23):2300633. 10.2807/1560-7917.ES.2024.29.23.2300633. PubMed PMC
Xanthopoulou K, Peter S, Tobys D, Behnke M, Dinkelacker AG, Eisenbeis S, Falgenhauer J, Falgenhauer L, Fritzenwanker M, Gölz H, Häcker G, Higgins PG, Imirzalioglu C, Käding N, Kern WV, Kramme E, Kola A, Mischnik A, Rieg S, Rohde AM, Rupp J, Tacconelli E, Vehreschild MJGT, Walker SV, Gastmeier P, Seifert H. DZIF R-Net study group. Vancomycin-resistant Enterococcus faecium colonizing patients on hospital admission in germany: prevalence and molecular epidemiology. J Antimicrob Chemother. 2020;75(10):2743–51. 10.1093/jac/dkaa271. PubMed
Oravcova V, Kolar M, Literak I. Highly variable vancomycin-resistant enterococci in the north-eastern part of the Czech Republic. Lett Appl Microbiol. 2019;69(1):16–22. 10.1111/lam.13121. PubMed
Greig DR, Dallman TJ, Hopkins KL, Jenkins C. MinION nanopore sequencing identifies the position and structure of bacterial antibiotic resistance determinants in a multidrug-resistant strain of enteroaggregative Escherichia coli. Microb Genom. 2018;4(10):e000213. 10.1099/mgen.0.000213. PubMed PMC
Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES, Clark TA, Luong K, Song Y, Tsai YC, Boitano M, Dayal J, Brooks SY, Schmidt B, Young AC, Thomas JW, Bouffard GG, Blakesley RW, NISC Comparative Sequencing Program, Mullikin JC, Korlach J, Henderson DK, Frank KM, Palmore TN, Segre JA. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6(254):254ra126. 10.1126/scitranslmed.3009845. PubMed PMC
The Transposon Registry. https://transposon.lstmed.ac.uk/tn-registry. Accessed 10 December 2024.
Matrat L, Plaisant F, Barreto C, Claris O, Butin M. Increasing use of linezolid in a tertiary NICU during a 10-year period: reasons and concerns for the future. Antimicrob Resist Infect Control. 2020;9(1):156. 10.1186/s13756-020-00818-2. PubMed PMC
Olearo F, Both A, Belmar Campos C, Hilgarth H, Klupp EM, Hansen JL, Maurer FP, Christner M, Aepfelbacher M, Rohde H. Emergence of linezolid-resistance in vancomycin-resistant Enterococcus faecium ST117 associated with increased linezolid-consumption. Int J Med Microbiol. 2021;311(2):151477. 10.1016/j.ijmm.2021.151477. PubMed
Minato Y, Dawadi S, Kordus SL, Sivanandam A, Aldrich CC, Baughn AD. Mutual potentiation drives synergy between Trimethoprim and sulfamethoxazole. Nat Commun. 2018;9(1):1003. 10.1038/s41467-018-03447-x. PubMed PMC
Wisell KT, Kahlmeter G, Giske CG. Trimethoprim and enterococci in urinary tract infections: new perspectives on an old issue. J Antimicrob Chemother. 2008;62(1):35–40. 10.1093/jac/dkn147. PubMed