Combating polymicrobial biofilm: recent approaches
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37310652
DOI
10.1007/s12223-023-01070-y
PII: 10.1007/s12223-023-01070-y
Knihovny.cz E-zdroje
- Klíčová slova
- Antibiofilm compounds, Antimicrobial resistance, Cell adhesion, Polymicrobial biofilm,
- MeSH
- antibakteriální látky farmakologie MeSH
- antifungální látky MeSH
- biofilmy MeSH
- lidé MeSH
- quorum sensing MeSH
- zubní kaz * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- antifungální látky MeSH
The polymicrobial biofilm (PMBF) is formed when microbes from multiple species co-aggregate into an envelope made of extra polymeric substances (EPS) that keep the microbes safe from external stresses. The formation of PMBF has been linked to a variety of human infections, including cystic fibrosis, dental caries, urinary tract infections, etc. Multiple microbial species co-aggregation during an infection results in a recalcitrant biofilm formation, which is a seriously threatening phenomenon. It is challenging to treat polymicrobial biofilms since they contain multiple microbes which show drug resistance to various antibiotics/antifungals. The present study discusses various approaches by which an antibiofilm compound works. Depending on their mode of action, antibiofilm compounds can block the adhesion of cells to one another, modify membranes/walls, or disrupt quorum-sensing systems.
Zobrazit více v PubMed
Abebe GM (2020) The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol 2020:1705814. https://doi.org/10.1155/2020/1705814 PubMed DOI PMC
Beaudoin T, Yau YCW, Stapleton PJ et al (2017) Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes 3:1–8. https://doi.org/10.1038/s41522-017-0035-0 DOI
Bechinger B, Gorr S-U (2016) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96:254–260. https://doi.org/10.1177/0022034516679973 PubMed DOI PMC
Campbell M, Fathi R, Cheng SY et al (2020) Rhamnus prinoides (gesho) stem extract prevents co-culture biofilm formation by Streptococcus mutans and Candida albicans. Lett Appl Microbiol 71:294–302. https://doi.org/10.1111/lam.13307 PubMed DOI
Carolus H, van Dyck K, van Dijck P (2019) Candida albicans and Staphylococcus species: a threatening twosome. Front Microbiol 10:2162 PubMed DOI PMC
Cheng G, Zhang Z, Chen S et al (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199. https://doi.org/10.1016/j.biomaterials.2007.05.041
Christ K, Wiedemann I, Bakowsky U et al (2007) The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochimica et Biophysica Acta (BBA) - Biomembranes 1768:694–704. https://doi.org/10.1016/j.bbamem.2006.12.003
Costa-Orlandi CB, Sardi JCO, Pitangui NS et al (2017) Fungal biofilms and polymicrobial diseases. J Fungi (basel) 3:22. https://doi.org/10.3390/jof3020022 PubMed DOI
de Alteriis E, Lombardi L, Falanga A et al (2018) Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue. Microb Pathog 125:189–195. https://doi.org/10.1016/j.micpath.2018.09.027
Desai JV (2018) Candida albicans hyphae: from growth initiation to invasion. J Fungus 4
Desbois AP (2012) Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov 7:111–122 PubMed DOI
Devulapalle KS, Mooser G (2001) Glucosyltransferase inactivation reduces dental caries. J Dent Res 80:466–469. https://doi.org/10.1177/00220345010800021301 PubMed DOI
Dincer S (2020) Antibiotic resistance in biofilm. In: Uslu FM (ed). IntechOpen, Rijeka 9
Dixon EF, Hall RA (2015) Noisy neighbourhoods: quorum sensing in fungal–polymicrobial infections. Cell Microbiol 17:1431–1441. https://doi.org/10.1111/cmi.12490
Filkins LM, O’Toole GA (2015) Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog 11:1–8. https://doi.org/10.1371/journal.ppat.1005258 DOI
Galdiero S, Falanga A, Morelli G, Galdiero M (2015) gH625: A milestone in understanding the many roles of membranotropic peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 1848:16–25. https://doi.org/10.1016/j.bbamem.2014.10.006
Giaouris E, Heir E, Desvaux M et al (2015) Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 6
Gomes D, Santos R, Soares RS et al (2020) Pexiganan in combination with nisin to control polymicrobial diabetic foot infections. Antibiotics 9. https://doi.org/10.3390/antibiotics9030128
Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan — a highly potent antimicrobial peptide designed from magainin. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788:1680–1686. https://doi.org/10.1016/j.bbamem.2008.10.009
Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18:310–321. https://doi.org/10.1016/j.micinf.2016.01.002 PubMed DOI PMC
Hacioglu M, Oyardi O, Bozkurt-Guzel C, Savage PB (2020) Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofilms. J Antibiot 73:455–462. https://doi.org/10.1038/s41429-020-0299-0 DOI
Hamzah H, Hertiani T, Pratiwi SUT et al (2020a) Antibiofilm studies of zerumbone against polymicrobial biofilms of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. Int J Pharm Res 12:1307–1314. https://doi.org/10.31838/ijpr/2020.SP1.211
Hamzah H, Hertiani T, Pratiwi SUT, Nuryastuti T (2020b) Efficacy of quercetin against polymicrobial biofilm on catheters. Res J Pharm Technol 13:5277–5282. https://doi.org/10.5958/0974-360X.2020.00923.3 DOI
Hamzah H, Hertiani T, Utami Tunjung Pratiwi S et al (2020c) The biofilm inhibition and eradication activity of curcumin againts polymicrobial biofilm. BIO Web Conf 28
Hamzah H, Pratiwi SUT, Hertiani T (2018) Efficacy of thymol and eugenol against polymicrobial biofilm. Indones J Pharm 29:214–221. https://doi.org/10.14499/indonesianjpharm29iss4pp221
Harriott MM, Noverr MC (2011) Importance of Candida–bacterial polymicrobial biofilms in disease. Trends Microbiol 19:557–563. https://doi.org/10.1016/j.tim.2011.07.004
He H, Wang Y, Fan Y et al (2021) Hypha essential genes in Candida albicans pathogenesis of oral lichen planus: an in-vitro study. BMC Oral Health 21:614. https://doi.org/10.1186/s12903-021-01975-5 PubMed DOI PMC
Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11
Jeong YJ, Kim HE, Han SJ, Choi JS (2021) Antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion against multi-species oral biofilms. Sci Rep 11:1–8. https://doi.org/10.1038/s41598-021-85375-3 DOI
Jiang W, Wang Y, Luo J et al (2018) Effects of antimicrobial peptide GH12 on the cariogenic properties and composition of a cariogenic multispecies biofilm. Appl Environ Microbiol 84:1–13. https://doi.org/10.1128/AEM.01423-18 DOI
Jiang Z, Nero T, Mukherjee S, et al (2021) Searching for the secret of stickiness: how biofilms adhere to surfaces. Front Microbiol 12
Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28:668–681 PubMed DOI
Kim D, Sengupta A, Niepa THR et al (2017) Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep 7:41332. https://doi.org/10.1038/srep41332 PubMed DOI PMC
Kim H-S, Ham S-Y, Jang Y et al (2019) Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel 253:754–761. https://doi.org/10.1016/j.fuel.2019.05.064
Kim Y-G, Lee J-H, Park S et al (2022) Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microb Biotechnol 15:590–602. https://doi.org/10.1111/1751-7915.13864
Koo H, Andes DR, Krysan DJ (2018) Candida-Streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog 14:e1007342 PubMed DOI PMC
Kulshrestha A, Gupta P (2022) Polymicrobial interaction in biofilm: mechanistic insights. Pathog Dis 80:ftac010. https://doi.org/10.1093/femspd/ftac010
Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8
Kumar P, Lee J-H, Beyenal H, Lee J (2020) Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol 28:753–768. https://doi.org/10.1016/j.tim.2020.03.014 PubMed DOI
Lazar V, Holban AM, Curutiu C, Chifiriuc MC (2021) Modulation of quorum sensing and biofilms in less investigated gram-negative ESKAPE pathogens. Front Microbiol 12
Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:288–356. https://doi.org/10.3390/pathogens2020288 PubMed DOI PMC
Lee J-H, Kim Y-G, Gupta VK et al (2018) Suppression of fluconazole resistant Candida albicans biofilm formation and filamentation by methylindole derivatives. Front Microbiol 9:2641. https://doi.org/10.3389/fmicb.2018.02641 PubMed DOI PMC
Lee J-H, Kim Y-G, Khadke SK et al (2019) Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by nepodin via hyphal-growth suppression. ACS Infect Dis 5:1177–1187. https://doi.org/10.1021/acsinfecdis.9b00033 PubMed DOI
Lee J-H, Kim Y-G, Park JG, Lee J (2017) Supercritical fluid extracts of Moringa oleifera and their unsaturated fatty acid components inhibit biofilm formation by Staphylococcus aureus. Food Control 80:74–82. https://doi.org/10.1016/j.foodcont.2017.04.035
Lee J-H, Kim Y-G, Park S et al (2022) Phytopigment alizarin inhibits multispecies biofilm development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics 14
Lee J-H, Kim Y-G, Yong Ryu S, Lee J (2016) Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci Rep 6:19267. https://doi.org/10.1038/srep19267 PubMed DOI PMC
Liaqat I, Gulab B, Hanif U et al (2022) Honey potential as antibiofilm, antiquorum sensing and dispersal agent against multispecies bacterial Biofilm. J Oleo Sci 71:425–434. https://doi.org/10.5650/jos.ess21199 PubMed DOI
Ma S, Moser D, Han F et al (2020) Preparation and antibiofilm studies of curcumin loaded chitosan nanoparticles against polymicrobial biofilms of Candida albicans and Staphylococcus aureus. Carbohydr Polym 241. https://doi.org/10.1016/j.carbpol.2020.116254
Malhotra R, Dhawan B, Garg B et al (2019) A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: an in vitro study. Indian J Orthop 53:148–153. https://doi.org/10.4103/ortho.IJOrtho_66_18 PubMed DOI PMC
Manoharan RK, Lee J-H, Kim Y-G, Lee J (2017) Alizarin and chrysazin inhibit biofilm and hyphal formation by Candida albicans. Frontiers in Cellular and Infection Microbiology 7
Manoharan RK, Lee J-H, Lee J (2018) Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation. Microb Biotechnol 11:1060–1069. https://doi.org/10.1111/1751-7915.13268 PubMed DOI PMC
Matsumoto-Nakano M (2018) Role of Streptococcus mutans surface proteins for biofilm formation. Japanese Dental Science Review 54:22–29. https://doi.org/10.1016/j.jdsr.2017.08.002
Meirelles LA, Newman DK (2018) Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 110:995–1010. https://doi.org/10.1111/mmi.14132
Meyer F, Enax J, Epple M et al (2021) Cariogenic biofilms: development, properties, and biomimetic preventive agents. Dent J (Basel) 9
Michael DW (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166. https://doi.org/10.1128/CMR.15.2.155-166.2002 DOI
Moons P, van Houdt R, Aertsen A et al (2006) Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli. Appl Environ Microbiol 72:7294–7300. https://doi.org/10.1128/AEM.01708-06 PubMed DOI PMC
Nguyen M-T, Luqman A, Bitschar K et al (2018) Staphylococcal (phospho)lipases promote biofilm formation and host cell invasion. Int J Med Microbiol 308:653–663. https://doi.org/10.1016/j.ijmm.2017.11.013
Nguyen PTM, Vo BH, Tran NT, Van QD (2015) Anti-biofilm activity of α-mangostin isolated from Garcinia mangostana L. Zeitschrift Fur Naturforschung - Section C J Biosci 70:313–318. https://doi.org/10.1515/znc-2015-0187 DOI
Penugonda K, Lindshield BL (2013) Fatty acid and phytosterol content of commercial saw palmetto supplements. Nutrients 5:3617–3633. https://doi.org/10.3390/nu5093617 PubMed DOI PMC
Periasamy S, Nair HAS, Lee KWK et al (2015) Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance. Front Microbiol 6
Qu Y, Locock K, Verma-Gaur J et al (2016) Searching for new strategies against polymicrobial biofilm infections: guanylated polymethacrylates kill mixed fungal/bacterial biofilms. J Antimicrob Chemother 71:413–421. https://doi.org/10.1093/jac/dkv334 PubMed DOI
Raorane CJ, Lee J-H, Lee J (2020) Rapid killing and biofilm inhibition of multidrug-resistant Acinetobacter baumannii strains and other microbes by iodoindoles. Biomolecules 10:1186. https://doi.org/10.3390/biom10081186 PubMed DOI PMC
Rohatgi A, Gupta P (2021) Natural and synthetic plant compounds as anti-biofilm agents against Escherichia coli O157:H7 biofilm. Infect Genet Evol 95:105055. https://doi.org/10.1016/j.meegid.2021.105055
Sargison F, Goncheva MI, Alves J et al (2021) Staphylococcus aureus secreted lipases do not inhibit innate immune killing mechanisms [version 2; peer review: 3 approved]. Wellcome Open Res 5. https://doi.org/10.12688/wellcomeopenres.16194.2
Sethupathy S, Sathiyamoorthi E, Kim Y-G et al (2020) Antibiofilm and antivirulence properties of indoles against Serratia marcescens. Front Microbiol 11:584812. https://doi.org/10.3389/fmicb.2020.584812
Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:76. https://doi.org/10.1186/s13756-019-0533-3 PubMed DOI PMC
Shing SR, Ramos AR, Patras KA et al (2020) The fungal pathogen Candida albicans promotes bladder colonization of group B Streptococcus. Front Cell Infect Microbiol 9
Siddhi G, Jyoti T, Sanjay P et al (2022) Cholic acid-peptide conjugates as potent antimicrobials against interkingdom polymicrobial biofilms. Antimicrob Agents Chemother 63:e00520–e619. https://doi.org/10.1128/AAC.00520-19 DOI
Singh S, Datta S, Narayanan KB, Rajnish KN (2021) Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genet Eng Biotechnol 19:140. https://doi.org/10.1186/s43141-021-00242-y PubMed DOI PMC
Tang M, Chen C, Zhu J et al (2021) Inhibition of bacterial adhesion and biofilm formation by a textured fluorinated alkoxyphosphazene surface. Bioact Mater 6:447–459. https://doi.org/10.1016/j.bioactmat.2020.08.027
Thibane VS, Ells R, Hugo A et al (2012) Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochimica et Biophysica Acta (BBA) - General Subjects 1820:1463–1468. https://doi.org/10.1016/j.bbagen.2012.05.004
Todd OA, Peters BM (2019) Candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions: Lessons beyond Koch’s postulates. J Fungus 5. https://doi.org/10.3390/jof5030081
Utami DT, Pratiwi SUT et al (2021) Antibiofilm effect of C-10 massoia lactone toward polymicrobial oral biofilms. J Adv Pharm Technol Res 12(1):89–93. https://doi.org/10.4103/japtr.JAPTR_105_20 PubMed DOI PMC
Vila T, Kong EF, Montelongo-Jauregui D et al (2021) Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence 12:835–851. https://doi.org/10.1080/21505594.2021.1894834 PubMed DOI PMC
Wang HY, Cheng JW, Yu HY et al (2015) Efficacy of a novel antimicrobial peptide against periodontal pathogens in both planktonic and polymicrobial biofilm states. Acta Biomater 25:150–161. https://doi.org/10.1016/j.actbio.2015.07.031 PubMed DOI
Willems HM, Xu Z, Peters BM (2016) Polymicrobial biofilm studies: from basic science to biofilm control. Curr Oral Health Rep 3:36–44. https://doi.org/10.1007/s40496-016-0078-y PubMed DOI PMC
Winter MB, Salcedo EC, Lohse MB et al (2016) Global identification of biofilm-specific proteolysis in Candida albicans. mBio 7. https://doi.org/10.1128/mBio.01514-16
Xu H, Sobue T, Bertolini M et al (2016) Streptococcus oralis and Candida albicans synergistically activate μ-calpain to degrade e-cadherin from oral epithelial junctions. J Infect Dis 214:925–934. https://doi.org/10.1093/infdis/jiw201 PubMed DOI PMC
Xu L-C, Wo Y, Meyerhoff ME, Siedlecki CA (2017) Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Acta Biomater 51:53–65. https://doi.org/10.1016/j.actbio.2017.01.030
Yong-Guy K, Jin-Hyung L, Sunyoung P et al (2022) The anticancer agent 3,3’-diindolylmethane inhibits multispecies biofilm formation by acne-causing bacteria and Candida albicans. Microbiol Spectr 10:e02056–e2121. https://doi.org/10.1128/spectrum.02056-21 DOI
Zhang Q, Ma Q, Wang Y et al (2021a) Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci 13:30. https://doi.org/10.1038/s41368-021-00137-1 PubMed DOI PMC
Zhang Q-Y, Yan Z-B, Meng Y-M et al (2021b) Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 8:48. https://doi.org/10.1186/s40779-021-00343-2 PubMed DOI PMC
Zheng H, Kim J, Liew M et al (2015) Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr Biol 25:29–37. https://doi.org/10.1016/j.cub.2014.11.018 PubMed DOI