A collection of cannabinoid-related negative findings from autaptic hippocampal neurons
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AT011162
NCCIH NIH HHS - United States
R01 DA047858
NIDA NIH HHS - United States
T32 DA024628
NIDA NIH HHS - United States
PubMed
37311900
PubMed Central
PMC10264370
DOI
10.1038/s41598-023-36710-3
PII: 10.1038/s41598-023-36710-3
Knihovny.cz E-zdroje
- MeSH
- endokanabinoidy MeSH
- hipokampus MeSH
- kanabinoidy * farmakologie MeSH
- nervový přenos MeSH
- neurony MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endokanabinoidy MeSH
- kanabinoidy * MeSH
Autaptic hippocampal neurons are an architecturally simple model of neurotransmission that express several forms of cannabinoid signaling. Over the past twenty years this model has proven valuable for studies ranging from enzymatic control of endocannabinoid production and breakdown, to CB1 receptor structure/function, to CB2 signaling, understanding 'spice' (synthetic cannabinoid) pharmacology, and more. However, while studying cannabinoid signaling in these neurons, we have occasionally encountered what one might call 'interesting negatives', valid and informative findings in the context of our experimental design that, given the nature of scientific publishing, may not otherwise find their way into the scientific literature. In autaptic hippocampal neurons we have found that: (1) The fatty acid binding protein (FABP) blocker SBFI-26 does not alter CB1-mediated neuroplasticity. (2) 1-AG signals poorly relative to 2-AG in autaptic neurons. (3) Indomethacin is not a CB1 PAM in autaptic neurons. (4) The CB1-associated protein SGIP1a is not necessary for CB1 desensitization. We are presenting these negative or perplexing findings in the hope that they will prove beneficial to other laboratories and elicit fruitful discussions regarding their relevance and significance.
Zobrazit více v PubMed
Straiker A, Mackie K. Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J. Physiol. 2005;569:501–517. doi: 10.1113/jphysiol.2005.091918. PubMed DOI PMC
Straiker A, et al. Monoacylglycerol lipase limits the duration of endocannabinoid-mediated depolarization-induced suppression of excitation in autaptic hippocampal neurons. Mol. Pharmacol. 2009;76:1220–1227. doi: 10.1124/mol.109.059030. PubMed DOI PMC
Jain T, Wager-Miller J, Mackie K, Straiker A. Diacylglycerol lipasealpha (DAGLalpha) and DAGLbeta cooperatively regulate the production of 2-arachidonoyl glycerol in autaptic hippocampal neurons. Mol. Pharmacol. 2013;84:296–302. doi: 10.1124/mol.113.085217. PubMed DOI PMC
Straiker A, Wager-Miller J, Mackie K. The CB1 cannabinoid receptor C-terminus regulates receptor desensitization in autaptic hippocampal neurones. Br. J. Pharmacol. 2012;165:2652–2659. doi: 10.1111/j.1476-5381.2011.01743.x. PubMed DOI PMC
Atwood BK, Straiker A, Mackie K. CB(2) cannabinoid receptors inhibit synaptic transmission when expressed in cultured autaptic neurons. Neuropharmacology. 2012;63:514–523. doi: 10.1016/j.neuropharm.2012.04.024. PubMed DOI PMC
Atwood BK, Huffman J, Straiker A, Mackie K. JWH018, a common constituent of 'Spice' herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br. J. Pharmacol. 2010;160:585–593. doi: 10.1111/j.1476-5381.2009.00582.x. PubMed DOI PMC
Atwood BK, Lee D, Straiker A, Widlanski TS, Mackie K. CP47,497–C8 and JWH073, commonly found in 'Spice' herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists. Eur. J. Pharmacol. 2011;659:139–145. doi: 10.1016/j.ejphar.2011.01.066. PubMed DOI PMC
Straiker A, Mitjavila J, Yin D, Gibson A, Mackie K. Aiming for allosterism: Evaluation of allosteric modulators of CB1 in a neuronal model. Pharmacol Res. 2015;99:370–376. doi: 10.1016/j.phrs.2015.07.017. PubMed DOI PMC
Mitjavila J, et al. Enantiomer-specific positive allosteric modulation of CB1 signaling in autaptic hippocampal neurons. Pharmacol. Res. 2018;129:475–481. doi: 10.1016/j.phrs.2017.11.019. PubMed DOI PMC
Jonsson KO, et al. AM404 and VDM 11 non-specifically inhibit C6 glioma cell proliferation at concentrations used to block the cellular accumulation of the endocannabinoid anandamide. Arch. Toxicol. 2003;77:201–207. doi: 10.1007/s00204-002-0435-6. PubMed DOI
Kamei J, Yoshikawa Y, Saitoh A. Effect of N-arachidonoyl-(2-methyl-4-hydroxyphenyl) amine (VDM11), an anandamide transporter inhibitor, on capsaicin-induced cough in mice. Cough. 2006;2:2. doi: 10.1186/1745-9974-2-2. PubMed DOI PMC
Hogestatt ED, et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J. Biol. Chem. 2005;280:31405–31412. doi: 10.1074/jbc.M501489200. PubMed DOI
Gulyas AI, et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 2004;20:441–458. doi: 10.1111/j.1460-9568.2004.03428.x. PubMed DOI
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br. J. Pharmacol. 2021 doi: 10.1111/bph.15469. PubMed DOI PMC
Straiker A, Mackie K. Cannabinoid signaling in inhibitory autaptic hippocampal neurons. Neuroscience. 2009;163:190–201. doi: 10.1016/j.neuroscience.2009.06.004. PubMed DOI PMC
Fauzan M, et al. Fatty acid-binding protein 5 modulates brain endocannabinoid tone and retrograde signaling in the striatum. Front. Cell Neurosci. 2022;16:936939. doi: 10.3389/fncel.2022.936939. PubMed DOI PMC
Haj-Dahmane S, et al. Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc. Natl. Acad. Sci. USA. 2018;115:3482–3487. doi: 10.1073/pnas.1721339115. PubMed DOI PMC
Yao Z, et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell. 2021;184:3222–3241. doi: 10.1016/j.cell.2021.04.021. PubMed DOI PMC
Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997;388:773–778. doi: 10.1038/42015. PubMed DOI
Hart FD, Boardman PL. Indomethacin: A new non-steroid anti-inflammatory agent. Br. Med. J. 1963;2:965–970. doi: 10.1136/bmj.2.5363.965. PubMed DOI PMC
Summ O, Evers S. Mechanism of action of indomethacin in indomethacin-responsive headaches. Curr. Pain Headache Rep. 2013;17:327. doi: 10.1007/s11916-013-0327-x. PubMed DOI
Laprairie RB, et al. Indomethacin enhances type 1 cannabinoid receptor signaling. Front Mol. Neurosci. 2019;12:257. doi: 10.3389/fnmol.2019.00257. PubMed DOI PMC
Straiker A, Dvorakova M, Zimmowitch A, Mackie K. Cannabidiol inhibits endocannabinoid signaling in autaptic hippocampal neurons. Mol Pharmacol. 2018;94:743–748. doi: 10.1124/mol.118.111864. PubMed DOI PMC
Gurevich VV, Gurevich EV. GPCR signaling regulation: The role of GRKs and arrestins. Front. Pharmacol. 2019;10:125. doi: 10.3389/fphar.2019.00125. PubMed DOI PMC
Jin W, et al. Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J. Neurosci. 1999;19:3773–3780. doi: 10.1523/JNEUROSCI.19-10-03773.1999. PubMed DOI PMC
Straiker AJ, Borden CR, Sullivan JM. G-protein alpha subunit isoforms couple differentially to receptors that mediate presynaptic inhibition at rat hippocampal synapses. J. Neurosci. 2002;22:2460–2468. doi: 10.1523/JNEUROSCI.22-07-02460.2002. PubMed DOI PMC
Nie Z, Mei Y, Ramkumar V. Short term desensitization of the A1 adenosine receptors in DDT1MF-2 cells. Mol. Pharmacol. 1997;52:456–464. doi: 10.1124/mol.52.3.456. PubMed DOI
Ferguson G, Watterson KR, Palmer TM. Subtype-specific kinetics of inhibitory adenosine receptor internalization are determined by sensitivity to phosphorylation by G protein-coupled receptor kinases. Mol. Pharmacol. 2000;57:546–552. doi: 10.1124/mol.57.3.546. PubMed DOI
Smith TH, et al. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation. Mol. Pharmacol. 2015;87:747–765. doi: 10.1124/mol.114.096495. PubMed DOI PMC
Uezu A, et al. SGIP1 alpha is an endocytic protein that directly interacts with phospholipids and Eps15. J. Biol. Chem. 2007;282:1. doi: 10.1074/jbc.M703815200. PubMed DOI
Hajkova A, et al. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner. Neuropharmacology. 2016;107:201–214. doi: 10.1016/j.neuropharm.2016.03.008. PubMed DOI
Gazdarica M, et al. SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G protein-coupled receptor kinase 3 signalosome. J. Neurochem. 2022;160:625–642. doi: 10.1111/jnc.15569. PubMed DOI PMC
Levison SW, McCarthy KD. Characterization and partial purification of AIM: A plasma protein that induces rat cerebral type 2 astroglia from bipotential glial progenitors. J. Neurochem. 1991;57:782–794. doi: 10.1111/j.1471-4159.1991.tb08220.x. PubMed DOI
Bekkers JM, Stevens CF. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA. 1991;88:7834–7838. doi: 10.1073/pnas.88.17.7834. PubMed DOI PMC
Furshpan EJ, MacLeish PR, O'Lague PH, Potter DD. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: Evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl. Acad. Sci. USA. 1976;73:4225–4229. doi: 10.1073/pnas.73.11.4225. PubMed DOI PMC
Harada K, et al. Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci. Rep. 2017;7:7351. doi: 10.1038/s41598-017-07820-6. PubMed DOI PMC
Thomas LS, Gehrig J. ImageJ/Fiji ROI 1-click tools for rapid manual image annotations and measurements. microPubl. Biol. 2020;10:17912. PubMed PMC
Hsu HC, et al. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites. Biochemistry. 2017;56:3454–3462. doi: 10.1021/acs.biochem.7b00194. PubMed DOI PMC
Bosquez T, et al. Differential enantiomer-specific signaling of cannabidiol at CB1 receptors. Mol. Pharmacol. 2022 doi: 10.1124/molpharm.121.000305. PubMed DOI PMC
Tham M, et al. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br. J. Pharmacol. 2019;176:1455–1469. doi: 10.1111/bph.14440. PubMed DOI PMC
Sugiura T, et al. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J. Biol. Chem. 1999;274:2794–2801. doi: 10.1074/jbc.274.5.2794. PubMed DOI
Savinainen JR, Jarvinen T, Laine K, Laitinen JT. Despite substantial degradation, 2-arachidonoylglycerol is a potent full efficacy agonist mediating CB(1) receptor-dependent G-protein activation in rat cerebellar membranes. Br. J. Pharmacol. 2001;134:664–672. doi: 10.1038/sj.bjp.0704297. PubMed DOI PMC
Weis F, et al. Effect of anaesthesia and cardiopulmonary bypass on blood endocannabinoid concentrations during cardiac surgery. Br. J. Anaesth. 2010;105:139–144. doi: 10.1093/bja/aeq117. PubMed DOI
Vogeser M, Schelling G. Pitfalls in measuring the endocannabinoid 2-arachidonoyl glycerol in biological samples. Clin. Chem. Lab. Med. 2007;45:1023–1025. doi: 10.1515/CCLM.2007.197. PubMed DOI
van der Stelt M, et al. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: Conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. J. Med. Chem. 2002;45:3709–3720. doi: 10.1021/jm020818q. PubMed DOI
Qin N, et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci. 2008;28:6231–6238. doi: 10.1523/JNEUROSCI.0504-08.2008. PubMed DOI PMC
Zygmunt PM, et al. Monoacylglycerols activate TRPV1—A link between phospholipase C and TRPV1. PLoS ONE. 2013;8:81618. doi: 10.1371/journal.pone.0081618. PubMed DOI PMC
Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A. Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur. J. Neurosci. 2003;18:1607–1614. doi: 10.1046/j.1460-9568.2003.02896.x. PubMed DOI
Suplita RL, 2nd, Gutierrez T, Fegley D, Piomelli D, Hohmann AG. Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia. Neuropharmacology. 2006;50:372–379. doi: 10.1016/j.neuropharm.2005.10.007. PubMed DOI
Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 2009;89:309–380. doi: 10.1152/physrev.00019.2008. PubMed DOI
Terman GW, et al. G-protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal. Br. J. Pharmacol. 2004;141:55–64. doi: 10.1038/sj.bjp.0705595. PubMed DOI PMC
Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol. Ther. 2012;133:40–69. doi: 10.1016/j.pharmthera.2011.08.001. PubMed DOI PMC
Erdtmann-Vourliotis M, Mayer P, Ammon S, Riechert U, Hollt V. Distribution of G-protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain. Brain Res. Mol. Brain Res. 2001;95:129–137. doi: 10.1016/s0006-8993(01)03046-3. PubMed DOI
Kouznetsova M, Kelley B, Shen M, Thayer SA. Desensitization of cannabinoid-mediated presynaptic inhibition of neurotransmission between rat hippocampal neurons in culture. Mol. Pharmacol. 2002;61:477–485. doi: 10.1124/mol.61.3.477. PubMed DOI
Dvorakova M, et al. SGIP1 is involved in regulation of emotionality, mood, and nociception and modulates in vivo signalling of cannabinoid CB1 receptors. Br. J. Pharmacol. 2021;178:1588–1604. doi: 10.1111/bph.15383. PubMed DOI PMC