SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G protein-coupled receptor kinase 3 signalosome

. 2022 Mar ; 160 (6) : 625-642. [epub] 20220111

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34970999

Cannabinoid receptor 1 (CB1R), a G protein-coupled receptor, plays a fundamental role in synaptic plasticity. Abnormal activity and deregulation of CB1R signaling result in a broad spectrum of pathological conditions. CB1R signaling is regulated by receptor desensitization including phosphorylation of residues within the intracellular C terminus by G protein-coupled receptor kinases (GRKs) that may lead to endocytosis. Furthermore, CB1R signaling is regulated by the protein Src homology 3-domain growth factor receptor-bound 2-like (SGIP1) that hinders receptor internalization, while enhancing CB1R association with β-arrestin. It has been postulated that phosphorylation of two clusters of serine/threonine residues, 425 SMGDS429 and 460 TMSVSTDTS468 , within the CB1R C-tail controls dynamics of the association between receptor and its interaction partners involved in desensitization. Several molecular determinants of these events are still not well understood. We hypothesized that the dynamics of these interactions are modulated by SGIP1. Using a panel of CB1Rs mutated in the aforementioned serine and threonine residues, together with an array of Bioluminescence energy transfer-based (BRET) sensors, we discovered that GRK3 forms complexes with Gβγ subunits of G proteins that largely independent of GRK3's interaction with CB1R. Furthermore, CB1R interacts only with activated GRK3. Interestingly, phosphorylation of two specific residues on CB1R triggers GRK3 dissociation from the desensitized receptor. SGIP1 increases the association of GRK3 with Gβγ subunits of G proteins, and with CB1R. Altogether, our data suggest that the CB1R signalosome complex is dynamically controlled by sequential phosphorylation of the receptor C-tail and is also modified by SGIP1.

Zobrazit více v PubMed

Al‐Zoubi, R. , Morales, P. , & Reggio, P. H. (2019). Structural insights into CB1 receptor biased signaling. International Journal of Molecular Sciences, 20(8), 1837. 10.3390/ijms20081837 PubMed DOI PMC

Appleyard, S. M. , Celver, J. , Pineda, V. , Kovoor, A. , Wayman, G. A. , & Chavkin, C. (1999). Agonist‐dependent desensitization of the kappa opioid receptor by G protein receptor kinase and beta‐arrestin. Journal of Biological Chemistry, 274, 23802–23807. PubMed

Araque, A. , Castillo, P. E. , Manzoni, O. J. , & Tonini, R. (2017). Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology, 124, 13–24. 10.1016/j.neuropharm.2017.06.017 PubMed DOI PMC

Bakshi, K. , Mercier, R. W. , & Pavlopoulos, S. (2007). Interaction of a fragment of the cannabinoid CB1 receptor C‐terminus with arrestin‐2. FEBS Letters, 581, 5009–5016. 10.1016/j.febslet.2007.09.030 PubMed DOI PMC

Bawa, T. , Altememi, G. F. , Eikenburg, D. C. , & Standifer, K. M. (2003). Desensitization of alpha 2A‐adrenoceptor signalling by modest levels of adrenaline is facilitated by beta 2‐adrenoceptor‐dependent GRK3 up‐regulation. British Journal of Pharmacology, 138, 921–931. PubMed PMC

Blume, L. C. , Patten, T. , Eldeeb, K. et al (2017). Cannabinoid receptor interacting protein 1a competition with beta‐arrestin for CB1 receptor binding sites. Molecular Pharmacology, 91, 75–86. PubMed PMC

Boughton, A. P. , Yang, P. , Tesmer, V. M. , Ding, B. , Tesmer, J. J. , & Chen, Z. (2011). Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein‐coupled receptor kinase 2 (GRK2) on a model membrane. Proceedings of the National Academy of Sciences of the United States of America, 108, E667–673. PubMed PMC

Brule, C. , Perzo, N. , Joubert, J. E. , Sainsily, X. , Leduc, R. , Castel, H. , & Prezeau, L. (2014). Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors. The FASEB Journal, 28, 5148–5162. 10.1096/fj.14-249771 PubMed DOI

Cahill, T. J. 3rd , Thomsen, A. R. , Tarrasch, J. T. et al (2017). Distinct conformations of GPCR‐beta‐arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 114, 2562–2567. PubMed PMC

Carman, C. V. , Barak, L. S. , Chen, C. , Liu‐Chen, L. Y. , Onorato, J. J. , Kennedy, S. P. , Caron, M. G. , & Benovic, J. L. (2000). Mutational analysis of Gbetagamma and phospholipid interaction with G protein‐coupled receptor kinase 2. Journal of Biological Chemistry, 275, 10443–10452. PubMed

Celver, J. P. , Lowe, J. , Kovoor, A. , Gurevich, V. V. , & Chavkin, C. (2001). Threonine 180 is required for G‐protein‐coupled receptor kinase 3‐ and beta‐arrestin 2‐mediated desensitization of the mu‐opioid receptor in Xenopus oocytes. Journal of Biological Chemistry, 276, 4894–4900. PubMed

Charest, P. G. , & Bouvier, M. (2003). Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances beta‐arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. Journal of Biological Chemistry, 278, 41541–41551. PubMed

Daaka, Y. , Pitcher, J. A. , Richardson, M. , Stoffel, R. H. , Robishaw, J. D. , & Lefkowitz, R. J. (1997). Receptor and G betagamma isoform‐specific interactions with G protein‐coupled receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 94, 2180–2185. PubMed PMC

Daigle, T. L. , Kearn, C. S. , & Mackie, K. (2008). Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling. Neuropharmacology, 54, 36–44. 10.1016/j.neuropharm.2007.06.005 PubMed DOI PMC

Daigle, T. L. , Kwok, M. L. , & Mackie, K. (2008). Regulation of CB1 cannabinoid receptor internalization by a promiscuous phosphorylation‐dependent mechanism. Journal of Neurochemistry, 106, 70–82. PubMed PMC

Dautzenberg, F. M. , & Hauger, R. L. (2001). G‐protein‐coupled receptor kinase 3‐ and protein kinase C‐mediated desensitization of the PACAP receptor type 1 in human Y‐79 retinoblastoma cells. Neuropharmacology, 40, 394–407. 10.1016/S0028-3908(00)00167-2 PubMed DOI

Dautzenberg, F. M. , Wille, S. , Braun, S. , & Hauger, R. L. (2002). GRK3 regulation during CRF‐ and urocortin‐induced CRF1 receptor desensitization. Biochemical and Biophysical Research Communications, 298, 303–308. 10.1016/S0006-291X(02)02463-4 PubMed DOI

de Jesus, M. L. , Salles, J. , Meana, J. J. , & Callado, L. F. (2006). Characterization of CB1 cannabinoid receptor immunoreactivity in postmortem human brain homogenates. Neuroscience, 140, 635–643. 10.1016/j.neuroscience.2006.02.024 PubMed DOI

Donthamsetti, P. , Quejada, J. R. , Javitch, J. A. , Gurevich, V. V. , & Lambert, N. A. (2015). Using bioluminescence resonance energy transfer (BRET) to characterize agonist‐induced arrestin recruitment to modified and unmodified G protein‐coupled receptors. Current Protocols in Pharmacology, 70(1), 11–12. 10.1002/0471141755.ph0214s70 PubMed DOI PMC

Dvorakova, M. , Kubik‐Zahorodna, A. , Straiker, A. , Sedlacek, R. , Hajkova, A. , Mackie, K. , & Blahos, J. (2021). SGIP1 is involved in regulation of emotionality, mood, and nociception and tunes in vivo signaling of Cannabinoid Receptor 1. British Journal of Pharmacology, 178(7), 1588–1604. 10.1111/bph.15383 PubMed DOI PMC

Fletcher‐Jones, A. , Hildick, K. L. , Evans, A. J. , Nakamura, Y. , Henley, J. M. , & Wilkinson, K. A. (2020). Protein interactors and trafficking pathways that regulate the cannabinoid type 1 receptor (CB1R). Frontiers in Molecular Neuroscience, 13, 108. 10.3389/fnmol.2020.00108 PubMed DOI PMC

Garcia, D. E. , Brown, S. , Hille, B. , & Mackie, K. (1998). Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor. Journal of Neuroscience, 18, 2834–2841. 10.1523/JNEUROSCI.18-08-02834.1998 PubMed DOI PMC

Gurevich, E. V. , Tesmer, J. J. , Mushegian, A. , & Gurevich, V. V. (2012). G protein‐coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacology & Therapeutics, 133, 40–69. 10.1016/j.pharmthera.2011.08.001 PubMed DOI PMC

Gyombolai, P. , Boros, E. , Hunyady, L. , & Turu, G. (2013). Differential beta‐arrestin2 requirements for constitutive and agonist‐induced internalization of the CB1 cannabinoid receptor. Molecular and Cellular Endocrinology, 372, 116–127. PubMed

Hajkova, A. , Techlovska, S. , Dvorakova, M. , Chambers, J. N. , Kumpost, J. , Hubalkova, P. , Prezeau, L. , & Blahos, J. (2016). SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner. Neuropharmacology, 107, 201–214. 10.1016/j.neuropharm.2016.03.008 PubMed DOI

Hamdan, F. F. , Rochdi, M. D. , Breton, B. , Fessart, D. , Michaud, D. E. , Charest, P. G. , Laporte, S. A. , & Bouvier, M. (2007). Unraveling G protein‐coupled receptor endocytosis pathways using real‐time monitoring of agonist‐promoted interaction between beta‐arrestins and AP‐2. Journal of Biological Chemistry, 282, 29089–29100. PubMed

Haring, M. , Marsicano, G. , Lutz, B. , & Monory, K. (2007). Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience, 146, 1212–1219. 10.1016/j.neuroscience.2007.02.021 PubMed DOI

Henne, W. M. , Kent, H. M. , Ford, M. G. J. , Hegde, B. G. , Daumke, O. , Butler, P. J. G. , Mittal, R. , Langen, R. , Evans, P. R. , & McMahon, H. T. (2007). Structure and analysis of FCHo2 F‐BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure, 15, 839–852. 10.1016/j.str.2007.05.002 PubMed DOI

Herkenham, M. , Lynn, A. B. , Little, M. D. , Johnson, M. R. , Melvin, L. S. , de Costa, B. R. , & Rice, K. C. (1990). Cannabinoid receptor localization in brain. Proceedings of the National Academy of Sciences, 87, 1932–1936. 10.1073/pnas.87.5.1932 PubMed DOI PMC

Homan, K. T. , & Tesmer, J. J. (2015). Molecular basis for small molecule inhibition of G protein‐coupled receptor kinases. ACS Chemical Biology, 10, 246–256. 10.1021/cb5003976 PubMed DOI PMC

Hsieh, C. , Brown, S. , Derleth, C. , & Mackie, K. (1999). Internalization and recycling of the CB1 cannabinoid receptor. Journal of Neurochemistry, 73, 493–501. 10.1046/j.1471-4159.1999.0730493.x PubMed DOI

Ikeda, S. , Keneko, M. & Fujiwara, S. (2007) Cardiotonic agent comprising GRK inhibitor. (T. P. C. Ltd ed.). Ikeda S, Keneko M, and Fujiwara S, Japan.

Ishii, K. , Chen, J. , Ishii, M. , Koch, W. J. , Freedman, N. J. , Lefkowitz, R. J. , & Coughlin, S. R. (1994). Inhibition of thrombin receptor signaling by a G‐protein coupled receptor kinase. Functional specificity among G‐protein coupled receptor kinases. Journal of Biological Chemistry, 269, 1125–1130. 10.1016/S0021-9258(17)42230-7 PubMed DOI

Jin, W. , Brown, S. , Roche, J. P. , Hsieh, C. , Celver, J. P. , Kovoor, A. , Chavkin, C. , & Mackie, K. (1999). Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. Journal of Neuroscience, 19, 3773–3780. 10.1523/JNEUROSCI.19-10-03773.1999 PubMed DOI PMC

Katona, I. , & Freund, T. F. (2012). Multiple functions of endocannabinoid signaling in the brain. Annual Review of Neuroscience, 35, 529–558. 10.1146/annurev-neuro-062111-150420 PubMed DOI PMC

Kirilly, E. , Hunyady, L. , & Bagdy, G. (2013). Opposing local effects of endocannabinoids on the activity of noradrenergic neurons and release of noradrenaline: relevance for their role in depression and in the actions of CB1 receptor antagonists. Journal of Neural Transmission, 120, 177–186. 10.1007/s00702-012-0900-1 PubMed DOI

Koch, W. J. , Inglese, J. , Stone, W. C. , & Lefkowitz, R. J. (1993). The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta‐adrenergic receptor kinase. Journal of Biological Chemistry, 268, 8256–8260. 10.1016/S0021-9258(18)53090-8 PubMed DOI

Latorraca, N. R. , Masureel, M. , Hollingsworth, S. A. , Heydenreich, F. M. , Suomivuori, C.‐M. , Brinton, C. , Townshend, R. J. L. , Bouvier, M. , Kobilka, B. K. , & Dror, R. O. (2020). How GPCR phosphorylation patterns orchestrate arrestin‐mediated signaling. Cell, 183(1813–1825), e1818. 10.1016/j.cell.2020.11.014 PubMed DOI PMC

Lee, M. H. , Appleton, K. M. , Strungs, E. G. , Kwon, J. Y. , Morinelli, T. A. , Peterson, Y. K. , Laporte, S. A. , & Luttrell, L. M. (2016). The conformational signature of beta‐arrestin2 predicts its trafficking and signalling functions. Nature, 531, 665. PubMed PMC

Leterrier, C. , Bonnard, D. , Carrel, D. , Rossier, J. , & Lenkei, Z. (2004). Constitutive endocytic cycle of the CB1 cannabinoid receptor. Journal of Biological Chemistry, 279, 36013–36021. 10.1074/jbc.M403990200 PubMed DOI

Liu, H. T. , & Naismith, J. H. (2008). An efficient one‐step site‐directed deletion, insertion, single and multiple‐site plasmid mutagenesis protocol. BMC Biotechnology, 8(1), 91. 10.1186/1472-6750-8-91 PubMed DOI PMC

Lodowski, D. T. , Barnhill, J. F. , Pyskadlo, R. M. , Ghirlando, R. , Sterne‐Marr, R. , & Tesmer, J. J. (2005). The role of G beta gamma and domain interfaces in the activation of G protein‐coupled receptor kinase 2. Biochemistry, 44, 6958–6970. PubMed

Luo, J. , Busillo, J. M. , Stumm, R. , & Benovic, J. L. (2017). G protein‐coupled receptor kinase 3 and protein kinase C phosphorylate the distal C‐terminal tail of the chemokine receptor CXCR4 and mediate recruitment of beta‐arrestin. Molecular Pharmacology, 91, 554–566. PubMed PMC

Marsicano, G. , & Lutz, B. (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. European Journal of Neuroscience, 11, 4213–4225. 10.1046/j.1460-9568.1999.00847.x PubMed DOI

Miess, E. , Gondin, A. B. , Yousuf, A. et al (2018). Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid mu‐opioid receptor desensitization. Science Signalling, 11(539). https://doi/10.1126/scisignal.aas9609 PubMed DOI

Moller, T. C. , Pedersen, M. F. , van Senten, J. R. , Seiersen, S. D. , Mathiesen, J. M. , Bouvier, M. , & Brauner‐Osborne, H. (2020). Dissecting the roles of GRK2 and GRK3 in mu‐opioid receptor internalization and beta‐arrestin2 recruitment using CRISPR/Cas9‐edited HEK293 cells. Scientific Reports, 10, 17395. PubMed PMC

Moore, C. A. C. , Milano, S. K. , & Benovic, J. L. (2007). Regulation of receptor trafficking by GRKs and arrestins. Annual Review of Physiology, 69, 451–482. 10.1146/annurev.physiol.69.022405.154712 PubMed DOI

Morgan, D. J. , Davis, B. J. , Kearn, C. S. , Marcus, D. , Cook, A. J. , Wager‐Miller, J. , Straiker, A. , Myoga, M. H. , Karduck, J. , Leishman, E. , Sim‐Selley, L. J. , Czyzyk, T. A. , Bradshaw, H. B. , Selley, D. E. , & Mackie, K. (2014). Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice. Journal of Neuroscience, 34, 5152–5163. 10.1523/JNEUROSCI.3445-12.2014 PubMed DOI PMC

Nobles, K. N. , Xiao, K. , Ahn, S. et al (2011). Distinct phosphorylation sites on the beta(2)‐adrenergic receptor establish a barcode that encodes differential functions of beta‐arrestin. Science Signalling, 4, ra51. PubMed PMC

Nogueras‐Ortiz, C. , & Yudowski, G. A. (2016). The multiple waves of cannabinoid 1 receptor signaling. Molecular Pharmacology, 90, 620–626. 10.1124/mol.116.104539 PubMed DOI PMC

Nogues, L. , Reglero, C. , Rivas, V. , Neves, M. , Penela, P. , & Mayor, F. Jr (2017). G‐protein‐coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Molecular Pharmacology, 91, 220–228. 10.1124/mol.116.107185 PubMed DOI

Nuber, S. , Zabel, U. , Lorenz, K. , Nuber, A. , Milligan, G. , Tobin, A. B. , Lohse, M. J. , & Hoffmann, C. (2016). beta‐Arrestin biosensors reveal a rapid, receptor‐dependent activation/deactivation cycle. Nature, 531, 661–664. PubMed PMC

Pacher, P. , & Kunos, G. (2013). Modulating the endocannabinoid system in human health and disease successes and failures. FEBS Journal, 280, 1918–1943. 10.1111/febs.12260 PubMed DOI PMC

Pitcher, J. A. , Inglese, J. , Higgins, J. B. et al (1992). Role of beta gamma subunits of G proteins in targeting the beta‐adrenergic receptor kinase to membrane‐bound receptors. Science, 257, 1264–1267. PubMed

Singh, S. N. , Bakshi, K. , Mercier, R. W. , Makriyannis, A. , & Pavlopoulos, S. (2011). Binding between a distal C‐terminus fragment of cannabinoid receptor 1 and arrestin‐2. Biochemistry, 50, 2223–2234. 10.1021/bi1018144 PubMed DOI PMC

Straiker, A. , Wager‐Miller, J. , & Mackie, K. (2012). The CB1 cannabinoid receptor C‐terminus regulates receptor desensitization in autaptic hippocampal neurones. British Journal of Pharmacology, 165, 2652–2659. 10.1111/j.1476-5381.2011.01743.x PubMed DOI PMC

Thal, D. M. , Yeow, R. Y. , Schoenau, C. , Huber, J. , & Tesmer, J. J. (2011). Molecular mechanism of selectivity among G protein‐coupled receptor kinase 2 inhibitors. Molecular Pharmacology, 80, 294–303. 10.1124/mol.111.071522 PubMed DOI PMC

Touhara, K. , Inglese, J. , Pitcher, J. A. , Shaw, G. , & Lefkowitz, R. J. (1994). Binding of G‐protein beta‐gamma‐subunits to pleckstrin homology domains. Journal of Biological Chemistry, 269, 10217–10220. 10.1016/S0021-9258(17)34048-6 PubMed DOI

Uezu, A. , Horiuchi, A. , Kanda, K. et al (2007). SGIP1 alpha is an endocytic protein that directly interacts with phospholipids and Eps15. Journal of Biological Chemistry, 282(36), 26481–26489. 10.1074/jbc.M703815200 PubMed DOI

Wager‐Miller, J. , Westenbroek, R. , & Mackie, K. (2002). Dimerization of G protein‐coupled receptors: CB1 cannabinoid receptors as an example. Chemistry and Physics of Lipids, 121, 83–89. 10.1016/S0009-3084(02)00151-2 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...