SGIP1 in axons prevents internalization of desensitized CB1R and modifies its function

. 2023 ; 17 () : 1213094. [epub] 20230720

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37547151

In the central nervous system (CNS), cannabinoid receptor 1 (CB1R) is preferentially expressed in axons where it has a unique property, namely resistance to agonist-driven endocytosis. This review aims to summarize what we know about molecular mechanisms of CB1R cell surface stability in axonal compartments, how these impact CB1R signaling, and to consider their physiological consequences. This review then focuses on a potential candidate for maintaining axonal CB1R at the cell surface, Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1). SGIP1 may contribute to the polarized distribution of CB1R and modify its signaling in axons. In addition, deletion of SGIP1 results in discrete behavioral changes in modalities controlled by the endocannabinoid system in vivo. Several drugs acting directly via CB1R have important therapeutic potential, however their adverse effects limit their clinical use. Future studies might reveal chemical approaches to target the SGIP1-CB1R interaction, with the aim to exploit the endocannabinoid system pharmaceutically in a discrete way, with minimized undesired consequences.

Zobrazit více v PubMed

Al-Zoubi R., Morales P., Reggio P. H. (2019). Structural insights into CB1 receptor biased signaling. Int. J. Mol. Sci. 20:1837. doi: 10.3390/ijms20081837, PMID: PubMed DOI PMC

Bakshi K., Mercier R. W., Pavlopoulos S. (2007). Interaction of a fragment of the cannabinoid CB1 receptor C-terminus with arrestin-2. FEBS Lett. 581, 5009–5016. doi: 10.1016/j.febslet.2007.09.030, PMID: PubMed DOI PMC

Blume L. C., Eldeeb K., Bass C. E., Selley D. E., Howlett A. C. (2015). Cannabinoid receptor interacting protein (CRIP1a) attenuates CB1R signaling in neuronal cells. Cell. Signal. 27, 716–726. doi: 10.1016/j.cellsig.2014.11.006, PMID: PubMed DOI PMC

Blume L. C., Patten T., Eldeeb K., Leone-Kabler S., Ilyasov A. A., Keegan B. M., et al. . (2017). Cannabinoid receptor interacting protein 1a competition with beta-Arrestin for CB1 receptor binding sites. Mol. Pharmacol. 91, 75–86. doi: 10.1124/mol.116.104638, PMID: PubMed DOI PMC

Bortolato M., Mangieri R. A., Fu J., Kim J. H., Arguello O., Duranti A., et al. . (2007). Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol. Psychiatry 62, 1103–1110. doi: 10.1016/j.biopsych.2006.12.001, PMID: PubMed DOI

Breivogel C. S., Lambert J. M., Gerfin S., Huffman J. W., Razdan R. K. (2008). Sensitivity to delta9-tetrahydrocannabinol is selectively enhanced in beta-arrestin2−/− mice. Behav. Pharmacol. 19, 298–307. doi: 10.1097/FBP.0b013e328308f1e6 PubMed DOI PMC

Calderon R. O., Attema B., Devries G. H. (1995). Lipid-composition of neuronal cell-bodies and neurites from cultured dorsal-root ganglia. J. Neurochem. 64, 424–429. doi: 10.1046/j.1471-4159.1995.64010424.x, PMID: PubMed DOI

Canals M., Milligan G. (2008). Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed mu opioid receptors. J. Biol. Chem. 283, 11424–11434. doi: 10.1074/jbc.M710300200, PMID: PubMed DOI

Chwedorowicz R., Raszewski G., Kapka-Skrzypczak L., Sawicki K., Studziński T. (2016). Event-related potentials (ERP) and SGIP1 gene polymorphisms in alcoholics: relation to family history of alcoholism and drug usage. Ann. Agric. Environ. Med. 23, 618–624. doi: 10.5604/12321966.1226856, PMID: PubMed DOI

Cinar R., Freund T. F., Katona I., Mackie K., Szucs M. (2008). Reciprocal inhibition of G-protein signaling is induced by CB1 cannabinoid and GABA(B) receptor interactions in rat hippocampal membranes. Neurochem. Int. 52, 1402–1409. doi: 10.1016/j.neuint.2008.02.005, PMID: PubMed DOI

Coutts A. A., Anavi-Goffer S., Ross R. A., MacEwan D. J., Mackie K., Pertwee R. G., et al. . (2001). Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J. Neurosci. 21, 2425–2433. doi: 10.1523/jneurosci.21-07-02425.2001, PMID: PubMed DOI PMC

Cummings N., Shields K. A., Curran J. E., Bozaoglu K., Trevaskis J., Gluschenko K., et al. . (2012). Genetic variation in SH3-domain GRB2-like (endophilin)-interacting protein 1 has a major impact on fat mass. Int. J. Obes. 36, 201–206. doi: 10.1038/ijo.2011.67, PMID: PubMed DOI

Daaka Y., Luttrell L. M., Ahn S., Della Rocca G. J., Ferguson S. S. G., Caron M. G., et al. . (1998). Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688. doi: 10.1074/jbc.273.2.685 PubMed DOI

Daigle T. L., Kwok M. L., Mackie K. (2008). Regulation of CB1 cannabinoid receptor internalization by a promiscuous phosphorylation-dependent mechanism. J. Neurochem. 106, 70–82. doi: 10.1111/j.1471-4159.2008.05336.x, PMID: PubMed DOI PMC

Danandeh A., Vozella V., Lim J., Oveisi F., Ramirez G. L., Mears D., et al. . (2018). Effects of fatty acid amide hydrolase inhibitor URB597 in a rat model of trauma-induced long-term anxiety. Psychopharmacology 235, 3211–3221. doi: 10.1007/s00213-018-5020-7, PMID: PubMed DOI

Delgado-Peraza F., Ahn K. H., Nogueras-Ortiz C., Mungrue I. N., Mackie K., Kendall D. A., et al. . (2016). Mechanisms of biased β-Arrestin-mediated signaling downstream from the cannabinoid 1 receptor. Mol. Pharmacol. 89, 618–629. doi: 10.1124/mol.115.103176, PMID: PubMed DOI PMC

Dergai O., Novokhatska O., Dergai M., Skrypkina I., Tsyba L., Moreau J., et al. . (2010). Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits. Biochem. Biophys. Res. Commun. 402, 408–413. doi: 10.1016/j.bbrc.2010.10.045, PMID: PubMed DOI

Dudok B., Barna L., Ledri M., Szabó S. I., Szabadits E., Pintér B., et al. . (2015). Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18, 75–86. doi: 10.1038/nn.3892, PMID: PubMed DOI PMC

Dvorakova M., Kubik-Zahorodna A., Straiker A., Sedlacek R., Hajkova A., Mackie K., et al. . (2021). SGIP1 is involved in regulation of emotionality, mood, and nociception and tunes in vivo signaling of cannabinoid receptor 1. Br. J. Pharmacol. 178, 1588–1604. doi: 10.1111/bph.15383, PMID: PubMed DOI PMC

Finn D. P., Haroutounian S., Hohmann A. G., Krane E., Soliman N., Rice A. S. C. (2021). Publish Ahead of Print). Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain, S5–S25. doi: 10.1097/j.pain.0000000000002268 PubMed DOI PMC

Fitzner D., Bader J. M., Penkert H., Bergner C. G., Su M., Weil M. T., et al. . (2020). Cell-type-and brain-region-resolved mouse brain Lipidome. Cell Rep. 32:108132. doi: 10.1016/j.celrep.2020.108132, PMID: PubMed DOI

Fletcher-Jones A., Hildick K. L., Evans A. J., Nakamura Y., Henley J. M., Wilkinson K. A. (2020). Protein interactors and trafficking pathways that regulate the cannabinoid type 1 receptor (CB1R). Front. Mol. Neurosci. 13:108. doi: 10.3389/fnmol.2020.00108, PMID: PubMed DOI PMC

Fletcher-Jones A., Hildick K. L., Evans A. J., Nakamura Y., Wilkinson K. A., Henley J. M. (2019). The C-terminal helix 9 motif in rat cannabinoid receptor type 1 regulates axonal trafficking and surface expression. elife 8:8. doi: 10.7554/eLife.44252 PubMed DOI PMC

Flores-Otero J., Ahn K. H., Delgado-Peraza F., Mackie K., Kendall D. A., Yudowski G. A. (2014). Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1. Nat. Commun. 5:4589. doi: 10.1038/ncomms5589, PMID: PubMed DOI PMC

Francis D. L., Schneider C. (1971). Jumping after naloxone precipitated withdrawal of chronic morphine in rat. Br. J. Pharmacol. 41:P424-+. PubMed PMC

Garcia D. E., Brown S., Hille B., Mackie K. (1998). Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor. J. Neurosci. 18, 2834–2841. doi: 10.1523/jneurosci.18-08-02834.1998, PMID: PubMed DOI PMC

Gazdarica M., Noda J., Durydivka O., Novosadova V., Mackie K., Pin J. P., et al. . (2022). SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G protein-coupled receptor kinase 3 signalosome. J. Neurochem. 160, 625–642. doi: 10.1111/jnc.15569, PMID: PubMed DOI PMC

Gurevich V. V., Gurevich E. V. (2015). Arrestins: critical players in trafficking of many GPCRs. Prog. Mol. Biol. Transl. Sci. 132, 1–14. doi: 10.1016/bs.pmbts.2015.02.010, PMID: PubMed DOI PMC

Guzikowski N. J., Kavalali E. T. (2021). Nano-Organization at the synapse: segregation of distinct forms of neurotransmission. Frontiers in synaptic. Neuroscience 13:13. doi: 10.3389/fnsyn.2021.796498 PubMed DOI PMC

Gyombolai P., Boros E., Hunyady L., Turu G. (2013). Differential beta-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor. Mol. Cell. Endocrinol. 372, 116–127. doi: 10.1016/j.mce.2013.03.013, PMID: PubMed DOI

Hajkova A., Techlovská Š., Dvořáková M., Chambers J. N., Kumpošt J., Hubálková P., et al. . (2016). SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner. Neuropharmacology 107, 201–214. doi: 10.1016/j.neuropharm.2016.03.008 PubMed DOI

Hasanein P., Parviz M., Keshavarz M., Javanmardi K. (2007). CB1 receptor activation in the basolateral amygdala produces antinociception in animal models of acute and tonic nociception. Clin. Exp. Pharmacol. Physiol. 34, 439–449. doi: 10.1111/j.1440-1681.2007.04592.x, PMID: PubMed DOI

Hebert-Chatelain E., Desprez T., Serrat R., Bellocchio L., Soria-Gomez E., Busquets-Garcia A., et al. . (2016). A cannabinoid link between mitochondria and memory. Nature 539, 555–559. doi: 10.1038/nature20127, PMID: PubMed DOI

Henne W. M., Kent H. M., Ford M. G. J., Hegde B. G., Daumke O., Butler P. J. G., et al. . (2007). Structure and analysis of FCHo2F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852. doi: 10.1016/j.str.2007.05.002 PubMed DOI

Hollopeter G., Lange J. J., Zhang Y., Vu T. N., Gu M., Ailion M., et al. . (2014). The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 Clathrin adaptor complex. Elife 3:65. doi: 10.7554/eLife.03648 PubMed DOI PMC

Howlett A. C., Blume L. C., Dalton G. D. (2010). CB1 cannabinoid receptors and their associated proteins. Curr. Med. Chem. 17, 1382–1393. doi: 10.2174/092986710790980023, PMID: PubMed DOI PMC

Hsieh C., Brown S., Derleth C., Mackie K. (1999). Internalization and recycling of the CB1 cannabinoid receptor. J. Neurochem. 73, 493–501. doi: 10.1046/j.1471-4159.1999.0730493.x, PMID: PubMed DOI

Jenniches I., Ternes S., Albayram O., Otte D. M., Bach K., Bindila L., et al. . (2016). Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol. Psychiatry 79, 858–868. doi: 10.1016/j.biopsych.2015.03.033 PubMed DOI

Jin W., Brown S., Roche J. P., Hsieh C., Celver J. P., Kovoor A., et al. . (1999). Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J. Neurosci. 19, 3773–3780. doi: 10.1523/jneurosci.19-10-03773.1999, PMID: PubMed DOI PMC

Kano M., Ohno-Shosaku T., Hashimotodani Y., Uchigashima M., Watanabe M. (2009). Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380. doi: 10.1152/physrev.00019.2008, PMID: PubMed DOI

Kathuria S., Gaetani S., Fegley D., Valiño F., Duranti A., Tontini A., et al. . (2003). Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81. doi: 10.1038/nm803 PubMed DOI

Kearn C. S., Blake-Palmer K., Daniel E., Mackie K., Glass M. (2005). Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol. 67, 1697–1704. doi: 10.1124/mol.104.006882, PMID: PubMed DOI

Ledent C., Valverde O., Cossu G., Petitet F., Aubert J. F., Beslot F., et al. . (1999). Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401–404. doi: 10.1126/science.283.5400.401, PMID: PubMed DOI

Lee S. H., Ledri M., Toth B., Marchionni I., Henstridge C. M., Dudok B., et al. . (2015). Multiple forms of endocannabinoid and Endovanilloid signaling regulate the tonic control of GABA release. J. Neurosci. 35, 10039–10057. doi: 10.1523/JNEUROSCI.4112-14.2015, PMID: PubMed DOI PMC

Lein E. S., Hawrylycz M. J., Ao N., Ayres M., Bensinger A., Bernard A., et al. . (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176. doi: 10.1038/nature05453, PMID: PubMed DOI

Leo L. M., Abood M. E. (2021). CB1 cannabinoid receptor signaling and biased signaling. Molecules 26:5413. doi: 10.3390/molecules26175413, PMID: PubMed DOI PMC

Leterrier C. (2018). The axon initial segment: an updated viewpoint. J. Neurosci. 38, 2135–2145. doi: 10.1523/JNEUROSCI.1922-17.2018, PMID: PubMed DOI PMC

Leterrier C., Bonnard D., Carrel D., Rossier J., Lenkei Z. (2004). Constitutive endocytic cycle of the CB1 cannabinoid receptor. J. Biol. Chem. 279, 36013–36021. doi: 10.1074/jbc.M403990200, PMID: PubMed DOI

Leterrier C., Lainé J., Darmon M., Boudin H., Rossier J., Lenkei Z. (2006). Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J. Neurosci. 26, 3141–3153. doi: 10.1523/jneurosci.5437-05.2006, PMID: PubMed DOI PMC

Li P., Merrill S. A., Jorgensen E. M., Shen K. (2016). Two Clathrin adaptor protein complexes instruct axon-dendrite polarity. Neuron 90, 564–580. doi: 10.1016/j.neuron.2016.04.020, PMID: PubMed DOI PMC

Lillo A., Lillo J., Raïch I., Miralpeix C., Dosrius F., Franco R., et al. . (2021). Ghrelin and cannabinoid functional interactions mediated by ghrelin/CB1 receptor Heteromers that are upregulated in the striatum from offspring of mice under a high-fat diet. Front. Cell. Neurosci. 15:786597. doi: 10.3389/fncel.2021.786597, PMID: PubMed DOI PMC

Lutz B., Marsicano G., Maldonado R., Hillard C. J. (2015). The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16, 705–718. doi: 10.1038/nrn4036, PMID: PubMed DOI PMC

Ma L., Umasankar P. K., Wrobel A. G., Lymar A., McCoy A. J., Holkar S. S., et al. . (2016). Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 Clathrin adaptor for cargo binding. Dev. Cell 37, 428–443. doi: 10.1016/j.devcel.2016.05.003, PMID: PubMed DOI PMC

Marsicano G., Wotjak C. T., Azad S. C., Bisogno T., Rammes G., Cascio M. G., et al. . (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534. doi: 10.1038/nature00839 PubMed DOI

Martini L., Thompson D., Kharazia V., Whistler J. L. (2010). Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology 35, 1363–1373. doi: 10.1038/npp.2010.6, PMID: PubMed DOI PMC

Martini L., Waldhoer M., Pusch M., Kharazia V., Fong J., Lee J. H., et al. . (2007). Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J. 21, 802–811. doi: 10.1096/fj.06-7132com, PMID: PubMed DOI

Mascarenhas D. C., Gomes K. S., Sorregotti T., Nunes-de-Souza R. L. (2017). Blockade of cannabinoid CB1 receptors in the dorsal periaqueductal gray unmasks the Antinociceptive effect of local injections of anandamide in mice. Front. Pharmacol. 8:695. doi: 10.3389/fphar.2017.00695, PMID: PubMed DOI PMC

Mascia F., Klotz L., Lerch J., Ahmed M. H., Zhang Y., Enz R. (2017). CRIP1a inhibits endocytosis of G-protein coupled receptors activated by endocannabinoids and glutamate by a common molecular mechanism. J. Neurochem. 141, 577–591. doi: 10.1111/jnc.14021, PMID: PubMed DOI

McDonald N. A., Henstridge C. M., Connolly C. N., Irving A. J. (2007). An essential role for constitutive endocytosis, but not activity, in the axonal targeting of the CB1 cannabinoid receptor. Mol. Pharmacol. 71, 976–984. doi: 10.1124/mol.106.029348 PubMed DOI

Mechoulam R., Parker L. A. (2013). The endocannabinoid system and the brain. Annu. Rev. Psychol., Fiske S. T. Editor 64, 21–47. doi: 10.1146/annurev-psych-113011-143739 PubMed DOI

Micale V., di Marzo V., Sulcova A., Wotjak C. T., Drago F. (2013). Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther. 138, 18–37. doi: 10.1016/j.pharmthera.2012.12.002, PMID: PubMed DOI

Mikasova L., Groc L., Choquet D., Manzoni O. J. (2008). Altered surface trafficking of presynaptic cannabinoid type 1 receptor in and out synaptic terminals parallels receptor desensitization. Proc. Natl. Acad. Sci. U. S. A. 105, 18596–18601. doi: 10.1073/pnas.0805959105, PMID: PubMed DOI PMC

Moore C. A. C., Milano S. K., Benovic J. L. (2007). Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol. 69, 451–482. doi: 10.1146/annurev.physiol.69.022405.154712, PMID: PubMed DOI

Moreira F. A., Kaiser N., Monory K., Lutz B. (2008). Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 54, 141–150. doi: 10.1016/j.neuropharm.2007.07.005, PMID: PubMed DOI

Morena M., Patel S., Bains J. S., Hill M. N. (2016). Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 41, 80–102. doi: 10.1038/npp.2015.166, PMID: PubMed DOI PMC

Morgan D. J., Davis B. J., Kearn C. S., Marcus D., Cook A. J., Wager-Miller J., et al. . (2014). Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice. J. Neurosci. 34, 5152–5163. doi: 10.1523/jneurosci.3445-12.2014, PMID: PubMed DOI PMC

Muro E., Pons T., Lequeux N., Fragola A., Sanson N., Lenkei Z., et al. . (2010). Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J. Am. Chem. Soc. 132, 4556–4557. doi: 10.1021/ja1005493, PMID: PubMed DOI

Nguyen P. T., Schmid C. L., Raehal K. M., Selley D. E., Bohn L. M., Sim-Selley L. J. (2012). beta-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol. Psychiatry 71, 714–724. doi: 10.1016/j.biopsych.2011.11.027 PubMed DOI PMC

Niehaus J. L., Liu Y., Wallis K. T., Egertová M., Bhartur S. G., Mukhopadhyay S., et al. . (2007). CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol. Pharmacol. 72, 1557–1566. doi: 10.1124/mol.107.039263, PMID: PubMed DOI

Nogueras-Ortiz C., Yudowski G. A. (2016). The multiple waves of cannabinoid 1 receptor signaling. Mol. Pharmacol. 90, 620–626. doi: 10.1124/mol.116.104539, PMID: PubMed DOI PMC

Ohno-Shosaku T., Kano M. (2014). Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr. Opin. Neurobiol. 29, 1–8. doi: 10.1016/j.conb.2014.03.017, PMID: PubMed DOI

Partlow E. A., Cannon K. S., Hollopeter G., Baker R. W. (2022). Structural basis of an endocytic checkpoint that primes the AP2 clathrin adaptor for cargo internalization. Nat. Struct. Mol. Biol. 29, 339–347. doi: 10.1038/s41594-022-00749-z, PMID: PubMed DOI PMC

Rinaldi-Carmona M., le Duigou A., Oustric D., Barth F., Bouaboula M., Carayon P., et al. . (1998). Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J. Pharmacol. Exp. Ther. 287, 1038–1047. PMID: PubMed

Rios C., Gomes I., Devi L. A. (2006). Mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br. J. Pharmacol. 148, 387–395. doi: 10.1038/sj.bjp.0706757, PMID: PubMed DOI PMC

Robledo P., Berrendero F., Ozaita A., Maldonado R. (2008). Advances in the field of cannabinoid-opioid cross-talk. Addict. Biol. 13, 213–224. doi: 10.1111/j.1369-1600.2008.00107.x, PMID: PubMed DOI

Rozenfeld R., Devi L. A. (2008). Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J. 22, 2311–2322. doi: 10.1096/fj.07-102731, PMID: PubMed DOI PMC

Saeedimasine M., Montanino A., Kleiven S., Villa A. (2019). Role of lipid composition on the structural and mechanical features of axonal membranes: a molecular simulation study. Sci. Rep. 9:9. doi: 10.1038/s41598-019-44318-9 PubMed DOI PMC

Salazar G., Love R., Styers M. L., Werner E., Peden A., Rodriguez S., et al. . (2004). AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J. Biol. Chem. 279, 25430–25439. doi: 10.1074/jbc.M402331200, PMID: PubMed DOI

Schneider M., Kasanetz F., Lynch D. L., Friemel C. M., Lassalle O., Hurst D. P., et al. . (2015). Enhanced functional activity of the cannabinoid Type-1 receptor mediates adolescent behavior. J. Neurosci. 35, 13975–13988. doi: 10.1523/jneurosci.1937-15.2015 PubMed DOI PMC

Shonesy B. C., Bluett R. J., Ramikie T. S., Báldi R., Hermanson D. J., Kingsley P. J., et al. . (2014). Genetic disruption of 2-Arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation. Cell Rep. 9, 1644–1653. doi: 10.1016/j.celrep.2014.11.001, PMID: PubMed DOI PMC

Singh S. N., Bakshi K., Mercier R. W., Makriyannis A., Pavlopoulos S. (2011). Binding between a distal C-terminus fragment of cannabinoid receptor 1 and Arrestin-2. Biochemistry 50, 2223–2234. doi: 10.1021/bi1018144, PMID: PubMed DOI PMC

Sochacki K. A., Dickey A. M., Strub M. P., Taraska J. W. (2017). Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361. doi: 10.1038/ncb3498, PMID: PubMed DOI PMC

Stauffer B., Wallis K. T., Wilson S. P., Egertová M., Elphick M. R., Lewis D. L., et al. . (2011). CRIP1a switches cannabinoid receptor agonist/antagonist-mediated protection from glutamate excitotoxicity. Neurosci. Lett. 503, 224–228. doi: 10.1016/j.neulet.2011.08.041, PMID: PubMed DOI

Straiker A., Wager-Miller J., Mackie K. (2012). The CB1 cannabinoid receptor C-terminus regulates receptor desensitization in autaptic hippocampal neurones. Br. J. Pharmacol. 165, 2652–2659. doi: 10.1111/j.1476-5381.2011.01743.x, PMID: PubMed DOI PMC

Taschler U., Eichmann T. O., Radner F. P. W., Grabner G. F., Wolinski H., Storr M., et al. . (2015). Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic-opioid receptor sensitivity. Br. J. Pharmacol. 172, 4419–4429. doi: 10.1111/bph.13224, PMID: PubMed DOI PMC

Thibault K., Carrel D., Bonnard D., Gallatz K., Simon A., Biard M., et al. . (2013). Activation-dependent subcellular distribution patterns of CB1 cannabinoid receptors in the rat forebrain. Cereb. Cortex 23, 2581–2591. doi: 10.1093/cercor/bhs240 PubMed DOI

Trevaskis J., Walder K., Foletta V., Kerr-Bayles L., McMillan J., Cooper A., et al. . (2005). Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1, a novel neuronal protein that regulates energy balance. Endocrinology 146, 3757–3764. doi: 10.1210/en.2005-0282, PMID: PubMed DOI

Uezu A., Horiuchi A., Kanda K., Kikuchi N., Umeda K., Tsujita K., et al. . (2007). SGIP1 alpha is an endocytic protein that directly interacts with phospholipids and Eps15. J. Biol. Chem. 282, 26481–26489. doi: 10.1074/jbc.M703815200 PubMed DOI

Umasankar P. K., Ma L., Thieman J. R., Jha A., Doray B., Watkins S. C., et al. . (2014). A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. Elife 3:86. doi: 10.7554/eLife.04137 PubMed DOI PMC

Westra M., Gutierrez Y., MacGillavry H. D. (2021). Contribution of membrane lipids to postsynaptic protein organization. Frontiers in synaptic. Neuroscience 13:13. doi: 10.3389/fnsyn.2021.790773 PubMed DOI PMC

Wickert M., Hildick K. L., Baillie G. L., Jelinek R., Aparisi Rey A., Monory K., et al. . (2018). The F238L point mutation in the cannabinoid type 1 receptor enhances basal endocytosis via lipid rafts. Front. Mol. Neurosci. 11:230. doi: 10.3389/fnmol.2018.00230, PMID: PubMed DOI PMC

Wilhelm B. G., Mandad S., Truckenbrodt S., Kröhnert K., Schäfer C., Rammner B., et al. . (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028. doi: 10.1126/science.1252884, PMID: PubMed DOI

Woodhams S. G., Chapman V., Finn D. P., Hohmann A. G., Neugebauer V. (2017). The cannabinoid system and pain. Neuropharmacology 124, 105–120. doi: 10.1016/j.neuropharm.2017.06.015, PMID: PubMed DOI PMC

Wu D. F., Yang L. Q., Goschke A., Stumm R., Brandenburg L. O., Liang Y. J., et al. . (2008). Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J. Neurochem. 104, 1132–1143. doi: 10.1111/j.1471-4159.2007.05063.x PubMed DOI

Zhu X., Finlay D. B., Glass M., Duffull S. B. (2019). Model-free and kinetic modelling approaches for characterising non-equilibrium pharmacological pathway activity: internalisation of cannabinoid CB1 receptors. Br. J. Pharmacol. 176, 2593–2607. doi: 10.1111/bph.14684, PMID: PubMed DOI PMC

Zimmer A., Zimmer A. M., Hohmann A. G., Herkenham M., Bonner T. I. (1999). Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. U. S. A. 96, 5780–5785. doi: 10.1073/pnas.96.10.5780, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...