Hexahydrocannabinol (HHC) and Δ9-tetrahydrocannabinol (Δ9-THC) driven activation of cannabinoid receptor 1 results in biased intracellular signaling

. 2024 Apr 22 ; 14 (1) : 9181. [epub] 20240422

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid38649680

Grantová podpora
21-02371S Czech Science Foundation
RVO68378050 Institute of Molecular Genetics
VK01010212 Ministry of Interior of the Czech Republic

Odkazy

PubMed 38649680
PubMed Central PMC11035541
DOI 10.1038/s41598-024-58845-7
PII: 10.1038/s41598-024-58845-7
Knihovny.cz E-zdroje

The Cannabis sativa plant has been used for centuries as a recreational drug and more recently in the treatment of patients with neurological or psychiatric disorders. In many instances, treatment goals include relief from posttraumatic disorders, anxiety, or to support treatment of chronic pain. Ligands acting on cannabinoid receptor 1 (CB1R) are also potential targets for the treatment of other health conditions. Using an evidence-based approach, pharmacological investigation of CB1R agonists is timely, with the aim to provide chronically ill patients relief using well-defined and characterized compounds from cannabis. Hexahydrocannabinol (HHC), currently available over the counter in many countries to adults and even children, is of great interests to policy makers, legal administrators, and healthcare regulators, as well as pharmacologists. Herein, we studied the pharmacodynamics of HHC epimers, which activate CB1R. We compared their key CB1R-mediated signaling pathway activities and compared them to the pathways activated by Δ9-tetrahydrocannabinol (Δ9-THC). We provide evidence that activation of CB1R by HHC ligands is only broadly comparable to those mediated by Δ9-THC, and that both HHC epimers have unique properties. Together with the greater chemical stability of HHC compared to Δ9-THC, these molecules have a potential to become a part of modern medicine.

Zobrazit více v PubMed

Mechoulam R. Cannabinoids as Therapeutic Agents. CRC Press; 1986. pp. 1–19.

ElSohly MA, Slade D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005;78:539–548. doi: 10.1016/j.lfs.2005.09.011. PubMed DOI

Radwan MM, Chandra S, Gul S, ElSohly MA. Cannabinoids, phenolics, terpenes and alkaloids of cannabis. Molecules. 2021 doi: 10.3390/molecules26092774. PubMed DOI PMC

Casati S, et al. Hexahydrocannabinol on the light cannabis market: The latest "new" entry. Cannabis Cannabinoid. 2022 doi: 10.1089/can.2022.0253. PubMed DOI

Ujvary, I. et al. Hexahydrocannabinol (HHC) and related substances. 1–106 (2023).

Qureshi MN, Kanwal F, Afridi M, Akram M. Estimation of biologically active cannabinoids in Cannabis indica by gas chromatography-mass spectrometry (GC-MS) World Appl. Sci. J. 2012;19:918–923. doi: 10.5829/idosi.wasj.2012.19.07.1922. DOI

Gaoni Y, Mechoulam R. Isomerization of cannabidiol to tetrahydrocannabinols. Tetrahedron. 1966;22:1481. doi: 10.1016/S0040-4020(01)99446-3. DOI

Reggio PH, Greer KV, Cox SM. The importance of the orientation of the C9 substituent to cannabinoid activity. J. Med. Chem. 1989;32:1630–1635. doi: 10.1021/jm00127a038. PubMed DOI

Mechoulam R, et al. Stereochemical requirements for cannabinoid activity. J. Med. Chem. 1980;23:1068–1072. doi: 10.1021/jm00184a002. PubMed DOI

Adams R, et al. Structure of cannabidiol. VIII. Position of the double bonds in cannabidiol. Marihuana activity of tetrahydro-cannabinols. J. Am. Chem. Soc. 1940;62:2566–2567. doi: 10.1021/ja01866a510. DOI

Russo F, et al. Synthesis and pharmacological activity of the epimers of hexahydrocannabinol (HHC) Sci. Rep. 2023;13:11061. doi: 10.1038/s41598-023-38188-5. PubMed DOI PMC

Cristino L, et al. Immunohistochemical localization of anabolic and catabolic enzymes for anandamide and other putative endovanilloids in the hippocampus and cerebellar cortex of the mouse brain. Neuroscience. 2008;151:955–968. doi: 10.1016/j.neuroscience.2007.11.047. PubMed DOI

Gray RA, Whalley BJ. The proposed mechanisms of action of CBD in epilepsy. Epilept. Disord. 2020;22:10–15. doi: 10.1684/epd.2020.1135. PubMed DOI

Penumarti A, Abdel-Rahman AA. The novel endocannabinoid receptor GPR18 is expressed in the rostral ventrolateral medulla and exerts tonic restraining influence on blood pressure. J. Pharmacol. Exp. Ther. 2014;349:29–38. doi: 10.1124/jpet.113.209213. PubMed DOI PMC

Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol. Neurobiol. 2018;38:121–132. doi: 10.1007/s10571-017-0554-5. PubMed DOI PMC

Zou SL, Kumar U. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci. 2018 doi: 10.3390/ijms19030833. PubMed DOI PMC

Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb. Exp. Pharmacol. 2005 doi: 10.1007/3-540-26573-2_10. PubMed DOI

Castillo PE, Younts TJ, Chavez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76:70–81. doi: 10.1016/j.neuron.2012.09.020. PubMed DOI PMC

Shenoy SK, Lefkowitz RJ. beta-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 2011;32:521–533. doi: 10.1016/j.tips.2011.05.002. PubMed DOI PMC

Rueda D, Galve-Roperh I, Haro A, Guzman M. The CB1 cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol. Pharmacol. 2000;58:814–820. doi: 10.1124/mol.58.4.814. PubMed DOI

Leo LM, Abood ME. CB1 cannabinoid receptor signaling and biased signaling. Molecules. 2021 doi: 10.3390/molecules26175413. PubMed DOI PMC

Ibsen MS, Connor M, Glass M. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid. 2017;2:48–60. doi: 10.1089/can.2016.0037. PubMed DOI PMC

Marzullo P, et al. Cannabidiol as the substrate in acid-catalyzed intramolecular cyclization. J. Nat. Prod. 2020;83:2894–2901. doi: 10.1021/acs.jnatprod.0c00436. PubMed DOI PMC

Hajkova A, et al. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner. Neuropharmacology. 2016;107:201–214. doi: 10.1016/j.neuropharm.2016.03.008. PubMed DOI

Gazdarica M, et al. SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G protein-coupled receptor kinase 3 signalosome. J. Neurochem. 2021 doi: 10.1111/jnc.15569. PubMed DOI PMC

Levoye A, et al. A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate. Front. Endocrinol. 2015 doi: 10.3389/fendo.2015.00167. PubMed DOI PMC

Herkenham M, et al. Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J. Neurosci. 1991;11:563–583. doi: 10.1523/JNEUROSCI.11-02-00563.1991. PubMed DOI PMC

Herkenham M, et al. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. U. S. A. 1990;87:1932–1936. doi: 10.1073/pnas.87.5.1932. PubMed DOI PMC

Jimenez-Blasco D, et al. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature. 2020;583:603–608. doi: 10.1038/s41586-020-2470-y. PubMed DOI

Maccarrone M, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci. 2015;36:277–296. doi: 10.1016/j.tips.2015.02.008. PubMed DOI PMC

Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 1999;11:4213–4225. doi: 10.1046/j.1460-9568.1999.00847.x. PubMed DOI

Haring M, Marsicano G, Lutz B, Monory K. Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience. 2007;146:1212–1219. doi: 10.1016/j.neuroscience.2007.02.021. PubMed DOI

Kirilly E, Hunyady L, Bagdy G. Opposing local effects of endocannabinoids on the activity of noradrenergic neurons and release of noradrenaline: Relevance for their role in depression and in the actions of CB1 receptor antagonists. J. Neural Transm. 2013;120:177–186. doi: 10.1007/s00702-012-0900-1. PubMed DOI

Hebert-Chatelain E, Marsicano G. A new link between cannabinoids and memory—The mitochondria. M. S-Med. Sci. 2017;33:579–581. doi: 10.1051/medsci/20173306007. PubMed DOI

Joshi N, Onaivi ES. Endocannabinoid system components: Overview and tissue distribution. Adv. Exp. Med. Biol. 2019;1162:1–12. doi: 10.1007/978-3-030-21737-2_1. PubMed DOI

Ford BM, et al. Characterization of structurally novel G protein biased CB1 agonists: Implications for drug development. Pharmacol. Res. 2017;125:161–177. doi: 10.1016/j.phrs.2017.08.008. PubMed DOI PMC

Ahn KH, Mahmoud MM, Kendall DA. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J. Biol. Chem. 2012;287:12070–12082. doi: 10.1074/jbc.M111.316463. PubMed DOI PMC

Dvorakova M, et al. SGIP1 is involved in regulation of emotionality, mood, and nociception and modulates in vivo signalling of cannabinoid CB1 receptors. Br. J. Pharmacol. 2021;178:1588–1604. doi: 10.1111/bph.15383. PubMed DOI PMC

Durydivka O, Mackie K, Blahos J. SGIP1 in axons prevents internalization of desensitized CB1R and modifies its function. Front. Neurosci. 2023 doi: 10.3389/fnins.2023.1213094. PubMed DOI PMC

Niehaus JL, et al. CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol. Pharmacol. 2007;72:1557–1566. doi: 10.1124/mol.107.039263. PubMed DOI

Blume LC, et al. Cannabinoid receptor interacting protein 1a competition with beta-arrestin for CB1 receptor binding sites. Mol. Pharmacol. 2017;91:75–86. doi: 10.1124/mol.116.104638. PubMed DOI PMC

Martini L, et al. Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. Faseb J. 2007;21:802–811. doi: 10.1096/fj.06-7132com. PubMed DOI

Martini L, Thompson D, Kharazia V, Whistler JL. Differential regulation of behavioral tolerance to WIN55, 212–2 by GASP1. Neuropsychopharmacology. 2010;35:1363–1373. doi: 10.1038/npp.2010.6. PubMed DOI PMC

Jarrahian A, Watts VJ, Barker EL. D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor. J. Pharmacol. Exp. Ther. 2004;308:880–886. doi: 10.1124/jpet.103.057620. PubMed DOI

Hudson BD, Hebert TE, Kelly ME. Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol. Pharmacol. 2010;77:1–9. doi: 10.1124/mol.109.060251. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...