SGIP1 in axons prevents internalization of desensitized CB1R and modifies its function
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
37547151
PubMed Central
PMC10397514
DOI
10.3389/fnins.2023.1213094
Knihovny.cz E-resources
- Keywords
- axon enrichment, cannabinoid receptor 1, clathrin-mediated endocytosis, internalization, synaptic transmission,
- Publication type
- Journal Article MeSH
- Review MeSH
In the central nervous system (CNS), cannabinoid receptor 1 (CB1R) is preferentially expressed in axons where it has a unique property, namely resistance to agonist-driven endocytosis. This review aims to summarize what we know about molecular mechanisms of CB1R cell surface stability in axonal compartments, how these impact CB1R signaling, and to consider their physiological consequences. This review then focuses on a potential candidate for maintaining axonal CB1R at the cell surface, Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1). SGIP1 may contribute to the polarized distribution of CB1R and modify its signaling in axons. In addition, deletion of SGIP1 results in discrete behavioral changes in modalities controlled by the endocannabinoid system in vivo. Several drugs acting directly via CB1R have important therapeutic potential, however their adverse effects limit their clinical use. Future studies might reveal chemical approaches to target the SGIP1-CB1R interaction, with the aim to exploit the endocannabinoid system pharmaceutically in a discrete way, with minimized undesired consequences.
See more in PubMed
Al-Zoubi R., Morales P., Reggio P. H. (2019). Structural insights into CB1 receptor biased signaling. Int. J. Mol. Sci. 20:1837. doi: 10.3390/ijms20081837, PMID: PubMed DOI PMC
Bakshi K., Mercier R. W., Pavlopoulos S. (2007). Interaction of a fragment of the cannabinoid CB1 receptor C-terminus with arrestin-2. FEBS Lett. 581, 5009–5016. doi: 10.1016/j.febslet.2007.09.030, PMID: PubMed DOI PMC
Blume L. C., Eldeeb K., Bass C. E., Selley D. E., Howlett A. C. (2015). Cannabinoid receptor interacting protein (CRIP1a) attenuates CB1R signaling in neuronal cells. Cell. Signal. 27, 716–726. doi: 10.1016/j.cellsig.2014.11.006, PMID: PubMed DOI PMC
Blume L. C., Patten T., Eldeeb K., Leone-Kabler S., Ilyasov A. A., Keegan B. M., et al. . (2017). Cannabinoid receptor interacting protein 1a competition with beta-Arrestin for CB1 receptor binding sites. Mol. Pharmacol. 91, 75–86. doi: 10.1124/mol.116.104638, PMID: PubMed DOI PMC
Bortolato M., Mangieri R. A., Fu J., Kim J. H., Arguello O., Duranti A., et al. . (2007). Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol. Psychiatry 62, 1103–1110. doi: 10.1016/j.biopsych.2006.12.001, PMID: PubMed DOI
Breivogel C. S., Lambert J. M., Gerfin S., Huffman J. W., Razdan R. K. (2008). Sensitivity to delta9-tetrahydrocannabinol is selectively enhanced in beta-arrestin2−/− mice. Behav. Pharmacol. 19, 298–307. doi: 10.1097/FBP.0b013e328308f1e6 PubMed DOI PMC
Calderon R. O., Attema B., Devries G. H. (1995). Lipid-composition of neuronal cell-bodies and neurites from cultured dorsal-root ganglia. J. Neurochem. 64, 424–429. doi: 10.1046/j.1471-4159.1995.64010424.x, PMID: PubMed DOI
Canals M., Milligan G. (2008). Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed mu opioid receptors. J. Biol. Chem. 283, 11424–11434. doi: 10.1074/jbc.M710300200, PMID: PubMed DOI
Chwedorowicz R., Raszewski G., Kapka-Skrzypczak L., Sawicki K., Studziński T. (2016). Event-related potentials (ERP) and SGIP1 gene polymorphisms in alcoholics: relation to family history of alcoholism and drug usage. Ann. Agric. Environ. Med. 23, 618–624. doi: 10.5604/12321966.1226856, PMID: PubMed DOI
Cinar R., Freund T. F., Katona I., Mackie K., Szucs M. (2008). Reciprocal inhibition of G-protein signaling is induced by CB1 cannabinoid and GABA(B) receptor interactions in rat hippocampal membranes. Neurochem. Int. 52, 1402–1409. doi: 10.1016/j.neuint.2008.02.005, PMID: PubMed DOI
Coutts A. A., Anavi-Goffer S., Ross R. A., MacEwan D. J., Mackie K., Pertwee R. G., et al. . (2001). Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J. Neurosci. 21, 2425–2433. doi: 10.1523/jneurosci.21-07-02425.2001, PMID: PubMed DOI PMC
Cummings N., Shields K. A., Curran J. E., Bozaoglu K., Trevaskis J., Gluschenko K., et al. . (2012). Genetic variation in SH3-domain GRB2-like (endophilin)-interacting protein 1 has a major impact on fat mass. Int. J. Obes. 36, 201–206. doi: 10.1038/ijo.2011.67, PMID: PubMed DOI
Daaka Y., Luttrell L. M., Ahn S., Della Rocca G. J., Ferguson S. S. G., Caron M. G., et al. . (1998). Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688. doi: 10.1074/jbc.273.2.685 PubMed DOI
Daigle T. L., Kwok M. L., Mackie K. (2008). Regulation of CB1 cannabinoid receptor internalization by a promiscuous phosphorylation-dependent mechanism. J. Neurochem. 106, 70–82. doi: 10.1111/j.1471-4159.2008.05336.x, PMID: PubMed DOI PMC
Danandeh A., Vozella V., Lim J., Oveisi F., Ramirez G. L., Mears D., et al. . (2018). Effects of fatty acid amide hydrolase inhibitor URB597 in a rat model of trauma-induced long-term anxiety. Psychopharmacology 235, 3211–3221. doi: 10.1007/s00213-018-5020-7, PMID: PubMed DOI
Delgado-Peraza F., Ahn K. H., Nogueras-Ortiz C., Mungrue I. N., Mackie K., Kendall D. A., et al. . (2016). Mechanisms of biased β-Arrestin-mediated signaling downstream from the cannabinoid 1 receptor. Mol. Pharmacol. 89, 618–629. doi: 10.1124/mol.115.103176, PMID: PubMed DOI PMC
Dergai O., Novokhatska O., Dergai M., Skrypkina I., Tsyba L., Moreau J., et al. . (2010). Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits. Biochem. Biophys. Res. Commun. 402, 408–413. doi: 10.1016/j.bbrc.2010.10.045, PMID: PubMed DOI
Dudok B., Barna L., Ledri M., Szabó S. I., Szabadits E., Pintér B., et al. . (2015). Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18, 75–86. doi: 10.1038/nn.3892, PMID: PubMed DOI PMC
Dvorakova M., Kubik-Zahorodna A., Straiker A., Sedlacek R., Hajkova A., Mackie K., et al. . (2021). SGIP1 is involved in regulation of emotionality, mood, and nociception and tunes in vivo signaling of cannabinoid receptor 1. Br. J. Pharmacol. 178, 1588–1604. doi: 10.1111/bph.15383, PMID: PubMed DOI PMC
Finn D. P., Haroutounian S., Hohmann A. G., Krane E., Soliman N., Rice A. S. C. (2021). Publish Ahead of Print). Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain, S5–S25. doi: 10.1097/j.pain.0000000000002268 PubMed DOI PMC
Fitzner D., Bader J. M., Penkert H., Bergner C. G., Su M., Weil M. T., et al. . (2020). Cell-type-and brain-region-resolved mouse brain Lipidome. Cell Rep. 32:108132. doi: 10.1016/j.celrep.2020.108132, PMID: PubMed DOI
Fletcher-Jones A., Hildick K. L., Evans A. J., Nakamura Y., Henley J. M., Wilkinson K. A. (2020). Protein interactors and trafficking pathways that regulate the cannabinoid type 1 receptor (CB1R). Front. Mol. Neurosci. 13:108. doi: 10.3389/fnmol.2020.00108, PMID: PubMed DOI PMC
Fletcher-Jones A., Hildick K. L., Evans A. J., Nakamura Y., Wilkinson K. A., Henley J. M. (2019). The C-terminal helix 9 motif in rat cannabinoid receptor type 1 regulates axonal trafficking and surface expression. elife 8:8. doi: 10.7554/eLife.44252 PubMed DOI PMC
Flores-Otero J., Ahn K. H., Delgado-Peraza F., Mackie K., Kendall D. A., Yudowski G. A. (2014). Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1. Nat. Commun. 5:4589. doi: 10.1038/ncomms5589, PMID: PubMed DOI PMC
Francis D. L., Schneider C. (1971). Jumping after naloxone precipitated withdrawal of chronic morphine in rat. Br. J. Pharmacol. 41:P424-+. PubMed PMC
Garcia D. E., Brown S., Hille B., Mackie K. (1998). Protein kinase C disrupts cannabinoid actions by phosphorylation of the CB1 cannabinoid receptor. J. Neurosci. 18, 2834–2841. doi: 10.1523/jneurosci.18-08-02834.1998, PMID: PubMed DOI PMC
Gazdarica M., Noda J., Durydivka O., Novosadova V., Mackie K., Pin J. P., et al. . (2022). SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G protein-coupled receptor kinase 3 signalosome. J. Neurochem. 160, 625–642. doi: 10.1111/jnc.15569, PMID: PubMed DOI PMC
Gurevich V. V., Gurevich E. V. (2015). Arrestins: critical players in trafficking of many GPCRs. Prog. Mol. Biol. Transl. Sci. 132, 1–14. doi: 10.1016/bs.pmbts.2015.02.010, PMID: PubMed DOI PMC
Guzikowski N. J., Kavalali E. T. (2021). Nano-Organization at the synapse: segregation of distinct forms of neurotransmission. Frontiers in synaptic. Neuroscience 13:13. doi: 10.3389/fnsyn.2021.796498 PubMed DOI PMC
Gyombolai P., Boros E., Hunyady L., Turu G. (2013). Differential beta-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor. Mol. Cell. Endocrinol. 372, 116–127. doi: 10.1016/j.mce.2013.03.013, PMID: PubMed DOI
Hajkova A., Techlovská Š., Dvořáková M., Chambers J. N., Kumpošt J., Hubálková P., et al. . (2016). SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner. Neuropharmacology 107, 201–214. doi: 10.1016/j.neuropharm.2016.03.008 PubMed DOI
Hasanein P., Parviz M., Keshavarz M., Javanmardi K. (2007). CB1 receptor activation in the basolateral amygdala produces antinociception in animal models of acute and tonic nociception. Clin. Exp. Pharmacol. Physiol. 34, 439–449. doi: 10.1111/j.1440-1681.2007.04592.x, PMID: PubMed DOI
Hebert-Chatelain E., Desprez T., Serrat R., Bellocchio L., Soria-Gomez E., Busquets-Garcia A., et al. . (2016). A cannabinoid link between mitochondria and memory. Nature 539, 555–559. doi: 10.1038/nature20127, PMID: PubMed DOI
Henne W. M., Kent H. M., Ford M. G. J., Hegde B. G., Daumke O., Butler P. J. G., et al. . (2007). Structure and analysis of FCHo2F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852. doi: 10.1016/j.str.2007.05.002 PubMed DOI
Hollopeter G., Lange J. J., Zhang Y., Vu T. N., Gu M., Ailion M., et al. . (2014). The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 Clathrin adaptor complex. Elife 3:65. doi: 10.7554/eLife.03648 PubMed DOI PMC
Howlett A. C., Blume L. C., Dalton G. D. (2010). CB1 cannabinoid receptors and their associated proteins. Curr. Med. Chem. 17, 1382–1393. doi: 10.2174/092986710790980023, PMID: PubMed DOI PMC
Hsieh C., Brown S., Derleth C., Mackie K. (1999). Internalization and recycling of the CB1 cannabinoid receptor. J. Neurochem. 73, 493–501. doi: 10.1046/j.1471-4159.1999.0730493.x, PMID: PubMed DOI
Jenniches I., Ternes S., Albayram O., Otte D. M., Bach K., Bindila L., et al. . (2016). Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol. Psychiatry 79, 858–868. doi: 10.1016/j.biopsych.2015.03.033 PubMed DOI
Jin W., Brown S., Roche J. P., Hsieh C., Celver J. P., Kovoor A., et al. . (1999). Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J. Neurosci. 19, 3773–3780. doi: 10.1523/jneurosci.19-10-03773.1999, PMID: PubMed DOI PMC
Kano M., Ohno-Shosaku T., Hashimotodani Y., Uchigashima M., Watanabe M. (2009). Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380. doi: 10.1152/physrev.00019.2008, PMID: PubMed DOI
Kathuria S., Gaetani S., Fegley D., Valiño F., Duranti A., Tontini A., et al. . (2003). Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81. doi: 10.1038/nm803 PubMed DOI
Kearn C. S., Blake-Palmer K., Daniel E., Mackie K., Glass M. (2005). Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol. 67, 1697–1704. doi: 10.1124/mol.104.006882, PMID: PubMed DOI
Ledent C., Valverde O., Cossu G., Petitet F., Aubert J. F., Beslot F., et al. . (1999). Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401–404. doi: 10.1126/science.283.5400.401, PMID: PubMed DOI
Lee S. H., Ledri M., Toth B., Marchionni I., Henstridge C. M., Dudok B., et al. . (2015). Multiple forms of endocannabinoid and Endovanilloid signaling regulate the tonic control of GABA release. J. Neurosci. 35, 10039–10057. doi: 10.1523/JNEUROSCI.4112-14.2015, PMID: PubMed DOI PMC
Lein E. S., Hawrylycz M. J., Ao N., Ayres M., Bensinger A., Bernard A., et al. . (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176. doi: 10.1038/nature05453, PMID: PubMed DOI
Leo L. M., Abood M. E. (2021). CB1 cannabinoid receptor signaling and biased signaling. Molecules 26:5413. doi: 10.3390/molecules26175413, PMID: PubMed DOI PMC
Leterrier C. (2018). The axon initial segment: an updated viewpoint. J. Neurosci. 38, 2135–2145. doi: 10.1523/JNEUROSCI.1922-17.2018, PMID: PubMed DOI PMC
Leterrier C., Bonnard D., Carrel D., Rossier J., Lenkei Z. (2004). Constitutive endocytic cycle of the CB1 cannabinoid receptor. J. Biol. Chem. 279, 36013–36021. doi: 10.1074/jbc.M403990200, PMID: PubMed DOI
Leterrier C., Lainé J., Darmon M., Boudin H., Rossier J., Lenkei Z. (2006). Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J. Neurosci. 26, 3141–3153. doi: 10.1523/jneurosci.5437-05.2006, PMID: PubMed DOI PMC
Li P., Merrill S. A., Jorgensen E. M., Shen K. (2016). Two Clathrin adaptor protein complexes instruct axon-dendrite polarity. Neuron 90, 564–580. doi: 10.1016/j.neuron.2016.04.020, PMID: PubMed DOI PMC
Lillo A., Lillo J., Raïch I., Miralpeix C., Dosrius F., Franco R., et al. . (2021). Ghrelin and cannabinoid functional interactions mediated by ghrelin/CB1 receptor Heteromers that are upregulated in the striatum from offspring of mice under a high-fat diet. Front. Cell. Neurosci. 15:786597. doi: 10.3389/fncel.2021.786597, PMID: PubMed DOI PMC
Lutz B., Marsicano G., Maldonado R., Hillard C. J. (2015). The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16, 705–718. doi: 10.1038/nrn4036, PMID: PubMed DOI PMC
Ma L., Umasankar P. K., Wrobel A. G., Lymar A., McCoy A. J., Holkar S. S., et al. . (2016). Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 Clathrin adaptor for cargo binding. Dev. Cell 37, 428–443. doi: 10.1016/j.devcel.2016.05.003, PMID: PubMed DOI PMC
Marsicano G., Wotjak C. T., Azad S. C., Bisogno T., Rammes G., Cascio M. G., et al. . (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534. doi: 10.1038/nature00839 PubMed DOI
Martini L., Thompson D., Kharazia V., Whistler J. L. (2010). Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology 35, 1363–1373. doi: 10.1038/npp.2010.6, PMID: PubMed DOI PMC
Martini L., Waldhoer M., Pusch M., Kharazia V., Fong J., Lee J. H., et al. . (2007). Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J. 21, 802–811. doi: 10.1096/fj.06-7132com, PMID: PubMed DOI
Mascarenhas D. C., Gomes K. S., Sorregotti T., Nunes-de-Souza R. L. (2017). Blockade of cannabinoid CB1 receptors in the dorsal periaqueductal gray unmasks the Antinociceptive effect of local injections of anandamide in mice. Front. Pharmacol. 8:695. doi: 10.3389/fphar.2017.00695, PMID: PubMed DOI PMC
Mascia F., Klotz L., Lerch J., Ahmed M. H., Zhang Y., Enz R. (2017). CRIP1a inhibits endocytosis of G-protein coupled receptors activated by endocannabinoids and glutamate by a common molecular mechanism. J. Neurochem. 141, 577–591. doi: 10.1111/jnc.14021, PMID: PubMed DOI
McDonald N. A., Henstridge C. M., Connolly C. N., Irving A. J. (2007). An essential role for constitutive endocytosis, but not activity, in the axonal targeting of the CB1 cannabinoid receptor. Mol. Pharmacol. 71, 976–984. doi: 10.1124/mol.106.029348 PubMed DOI
Mechoulam R., Parker L. A. (2013). The endocannabinoid system and the brain. Annu. Rev. Psychol., Fiske S. T. Editor 64, 21–47. doi: 10.1146/annurev-psych-113011-143739 PubMed DOI
Micale V., di Marzo V., Sulcova A., Wotjak C. T., Drago F. (2013). Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther. 138, 18–37. doi: 10.1016/j.pharmthera.2012.12.002, PMID: PubMed DOI
Mikasova L., Groc L., Choquet D., Manzoni O. J. (2008). Altered surface trafficking of presynaptic cannabinoid type 1 receptor in and out synaptic terminals parallels receptor desensitization. Proc. Natl. Acad. Sci. U. S. A. 105, 18596–18601. doi: 10.1073/pnas.0805959105, PMID: PubMed DOI PMC
Moore C. A. C., Milano S. K., Benovic J. L. (2007). Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol. 69, 451–482. doi: 10.1146/annurev.physiol.69.022405.154712, PMID: PubMed DOI
Moreira F. A., Kaiser N., Monory K., Lutz B. (2008). Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 54, 141–150. doi: 10.1016/j.neuropharm.2007.07.005, PMID: PubMed DOI
Morena M., Patel S., Bains J. S., Hill M. N. (2016). Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 41, 80–102. doi: 10.1038/npp.2015.166, PMID: PubMed DOI PMC
Morgan D. J., Davis B. J., Kearn C. S., Marcus D., Cook A. J., Wager-Miller J., et al. . (2014). Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice. J. Neurosci. 34, 5152–5163. doi: 10.1523/jneurosci.3445-12.2014, PMID: PubMed DOI PMC
Muro E., Pons T., Lequeux N., Fragola A., Sanson N., Lenkei Z., et al. . (2010). Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J. Am. Chem. Soc. 132, 4556–4557. doi: 10.1021/ja1005493, PMID: PubMed DOI
Nguyen P. T., Schmid C. L., Raehal K. M., Selley D. E., Bohn L. M., Sim-Selley L. J. (2012). beta-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol. Psychiatry 71, 714–724. doi: 10.1016/j.biopsych.2011.11.027 PubMed DOI PMC
Niehaus J. L., Liu Y., Wallis K. T., Egertová M., Bhartur S. G., Mukhopadhyay S., et al. . (2007). CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol. Pharmacol. 72, 1557–1566. doi: 10.1124/mol.107.039263, PMID: PubMed DOI
Nogueras-Ortiz C., Yudowski G. A. (2016). The multiple waves of cannabinoid 1 receptor signaling. Mol. Pharmacol. 90, 620–626. doi: 10.1124/mol.116.104539, PMID: PubMed DOI PMC
Ohno-Shosaku T., Kano M. (2014). Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr. Opin. Neurobiol. 29, 1–8. doi: 10.1016/j.conb.2014.03.017, PMID: PubMed DOI
Partlow E. A., Cannon K. S., Hollopeter G., Baker R. W. (2022). Structural basis of an endocytic checkpoint that primes the AP2 clathrin adaptor for cargo internalization. Nat. Struct. Mol. Biol. 29, 339–347. doi: 10.1038/s41594-022-00749-z, PMID: PubMed DOI PMC
Rinaldi-Carmona M., le Duigou A., Oustric D., Barth F., Bouaboula M., Carayon P., et al. . (1998). Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J. Pharmacol. Exp. Ther. 287, 1038–1047. PMID: PubMed
Rios C., Gomes I., Devi L. A. (2006). Mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br. J. Pharmacol. 148, 387–395. doi: 10.1038/sj.bjp.0706757, PMID: PubMed DOI PMC
Robledo P., Berrendero F., Ozaita A., Maldonado R. (2008). Advances in the field of cannabinoid-opioid cross-talk. Addict. Biol. 13, 213–224. doi: 10.1111/j.1369-1600.2008.00107.x, PMID: PubMed DOI
Rozenfeld R., Devi L. A. (2008). Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J. 22, 2311–2322. doi: 10.1096/fj.07-102731, PMID: PubMed DOI PMC
Saeedimasine M., Montanino A., Kleiven S., Villa A. (2019). Role of lipid composition on the structural and mechanical features of axonal membranes: a molecular simulation study. Sci. Rep. 9:9. doi: 10.1038/s41598-019-44318-9 PubMed DOI PMC
Salazar G., Love R., Styers M. L., Werner E., Peden A., Rodriguez S., et al. . (2004). AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J. Biol. Chem. 279, 25430–25439. doi: 10.1074/jbc.M402331200, PMID: PubMed DOI
Schneider M., Kasanetz F., Lynch D. L., Friemel C. M., Lassalle O., Hurst D. P., et al. . (2015). Enhanced functional activity of the cannabinoid Type-1 receptor mediates adolescent behavior. J. Neurosci. 35, 13975–13988. doi: 10.1523/jneurosci.1937-15.2015 PubMed DOI PMC
Shonesy B. C., Bluett R. J., Ramikie T. S., Báldi R., Hermanson D. J., Kingsley P. J., et al. . (2014). Genetic disruption of 2-Arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation. Cell Rep. 9, 1644–1653. doi: 10.1016/j.celrep.2014.11.001, PMID: PubMed DOI PMC
Singh S. N., Bakshi K., Mercier R. W., Makriyannis A., Pavlopoulos S. (2011). Binding between a distal C-terminus fragment of cannabinoid receptor 1 and Arrestin-2. Biochemistry 50, 2223–2234. doi: 10.1021/bi1018144, PMID: PubMed DOI PMC
Sochacki K. A., Dickey A. M., Strub M. P., Taraska J. W. (2017). Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361. doi: 10.1038/ncb3498, PMID: PubMed DOI PMC
Stauffer B., Wallis K. T., Wilson S. P., Egertová M., Elphick M. R., Lewis D. L., et al. . (2011). CRIP1a switches cannabinoid receptor agonist/antagonist-mediated protection from glutamate excitotoxicity. Neurosci. Lett. 503, 224–228. doi: 10.1016/j.neulet.2011.08.041, PMID: PubMed DOI
Straiker A., Wager-Miller J., Mackie K. (2012). The CB1 cannabinoid receptor C-terminus regulates receptor desensitization in autaptic hippocampal neurones. Br. J. Pharmacol. 165, 2652–2659. doi: 10.1111/j.1476-5381.2011.01743.x, PMID: PubMed DOI PMC
Taschler U., Eichmann T. O., Radner F. P. W., Grabner G. F., Wolinski H., Storr M., et al. . (2015). Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic-opioid receptor sensitivity. Br. J. Pharmacol. 172, 4419–4429. doi: 10.1111/bph.13224, PMID: PubMed DOI PMC
Thibault K., Carrel D., Bonnard D., Gallatz K., Simon A., Biard M., et al. . (2013). Activation-dependent subcellular distribution patterns of CB1 cannabinoid receptors in the rat forebrain. Cereb. Cortex 23, 2581–2591. doi: 10.1093/cercor/bhs240 PubMed DOI
Trevaskis J., Walder K., Foletta V., Kerr-Bayles L., McMillan J., Cooper A., et al. . (2005). Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1, a novel neuronal protein that regulates energy balance. Endocrinology 146, 3757–3764. doi: 10.1210/en.2005-0282, PMID: PubMed DOI
Uezu A., Horiuchi A., Kanda K., Kikuchi N., Umeda K., Tsujita K., et al. . (2007). SGIP1 alpha is an endocytic protein that directly interacts with phospholipids and Eps15. J. Biol. Chem. 282, 26481–26489. doi: 10.1074/jbc.M703815200 PubMed DOI
Umasankar P. K., Ma L., Thieman J. R., Jha A., Doray B., Watkins S. C., et al. . (2014). A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. Elife 3:86. doi: 10.7554/eLife.04137 PubMed DOI PMC
Westra M., Gutierrez Y., MacGillavry H. D. (2021). Contribution of membrane lipids to postsynaptic protein organization. Frontiers in synaptic. Neuroscience 13:13. doi: 10.3389/fnsyn.2021.790773 PubMed DOI PMC
Wickert M., Hildick K. L., Baillie G. L., Jelinek R., Aparisi Rey A., Monory K., et al. . (2018). The F238L point mutation in the cannabinoid type 1 receptor enhances basal endocytosis via lipid rafts. Front. Mol. Neurosci. 11:230. doi: 10.3389/fnmol.2018.00230, PMID: PubMed DOI PMC
Wilhelm B. G., Mandad S., Truckenbrodt S., Kröhnert K., Schäfer C., Rammner B., et al. . (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028. doi: 10.1126/science.1252884, PMID: PubMed DOI
Woodhams S. G., Chapman V., Finn D. P., Hohmann A. G., Neugebauer V. (2017). The cannabinoid system and pain. Neuropharmacology 124, 105–120. doi: 10.1016/j.neuropharm.2017.06.015, PMID: PubMed DOI PMC
Wu D. F., Yang L. Q., Goschke A., Stumm R., Brandenburg L. O., Liang Y. J., et al. . (2008). Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J. Neurochem. 104, 1132–1143. doi: 10.1111/j.1471-4159.2007.05063.x PubMed DOI
Zhu X., Finlay D. B., Glass M., Duffull S. B. (2019). Model-free and kinetic modelling approaches for characterising non-equilibrium pharmacological pathway activity: internalisation of cannabinoid CB1 receptors. Br. J. Pharmacol. 176, 2593–2607. doi: 10.1111/bph.14684, PMID: PubMed DOI PMC
Zimmer A., Zimmer A. M., Hohmann A. G., Herkenham M., Bonner T. I. (1999). Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. U. S. A. 96, 5780–5785. doi: 10.1073/pnas.96.10.5780, PMID: PubMed DOI PMC