Universal Strategy for Reversing Aging and Defects in Graphene Oxide for Highly Conductive Graphene Aerogels

. 2023 Jun 08 ; 127 (22) : 10599-10608. [epub] 20230530

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37313117

The production of highly stable, defect-free, and electrically conducting 3D graphene structures from graphene oxide precursors is challenging. This is because graphene oxide is a metastable material whose structure and chemistry evolve due to aging. Aging changes the relative composition of oxygen functional groups attached to the graphene oxide and negatively impacts the fabrication and properties of reduced graphene oxide. Here, we report a universal strategy to reverse the aging of graphene oxide precursors using oxygen plasma treatment. This treatment decreases the size of graphene oxide flakes and restores negative zeta potential and suspension stability in water, enabling the fabrication of compact and mechanically stable graphene aerogels using hydrothermal synthesis. Moreover, we employ high-temperature annealing to remove oxygen-containing functionalities and repair the lattice defects in reduced graphene oxide. This method allows obtaining highly electrically conducting graphene aerogels with electrical conductivity of 390 S/m and low defect density. The role of carboxyl, hydroxyl, epoxide, and ketonic oxygen species is thoroughly investigated using X-ray photoelectron and Raman spectroscopies. Our study provides unique insight into the chemical transformations occurring during the aging and thermal reduction of graphene oxide from room temperature up to 2700 °C.

Zobrazit více v PubMed

Mkhoyan K. A.; Contryman A. W.; Silcox J.; Stewart D. A.; Eda G.; Mattevi C.; Miller S.; Chhowalla M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9 (3), 1058–1063. 10.1021/nl8034256. PubMed DOI

Dreyer D. R.; Park S.; Bielawski C. W.; Ruoff R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39 (1), 228–240. 10.1039/B917103G. PubMed DOI

Chen D.; Feng H.; Li J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112 (11), 6027–6053. 10.1021/cr300115g. PubMed DOI

Compton O. C.; Nguyen S. T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6 (6), 711–723. 10.1002/smll.200901934. PubMed DOI

Gorgolis G.; Galiotis C. Graphene Aerogels: A Review. 2D Mater. 2017, 4 (3), 03200110.1088/2053-1583/aa7883. DOI

Kotal M.; Kim J.; Oh J.; Oh I.-K. Recent Progress in Multifunctional Graphene Aerogels. Front. Mater. 2016, 3, 29.10.3389/fmats.2016.00029. DOI

Luo S.; Samad Y. A.; Chan V.; Liao K. Cellular Graphene: Fabrication, Mechanical Properties, and Strain-Sensing Applications. Matter 2019, 1 (5), 1148–1202. 10.1016/j.matt.2019.10.001. DOI

Ren L.; Hui K. N.; Hui K. S.; Liu Y.; Qi X.; Zhong J.; Du Y.; Yang J. 3D Hierarchical Porous Graphene Aerogel with Tunable Meso-Pores on Graphene Nanosheets for High-Performance Energy Storage. Sci. Rep. 2015, 5 (1), 14229.10.1038/srep14229. PubMed DOI PMC

Ping Y.; Gong Y.; Fu Q.; Pan C. Preparation of Three-Dimensional Graphene Foam for High Performance Supercapacitors. Prog. Nat. Sci. Mater. Int. 2017, 27 (2), 177–181. 10.1016/j.pnsc.2017.03.005. DOI

Yang H. B.; Miao J.; Hung S.-F.; Chen J.; Tao H. B.; Wang X.; Zhang L.; Chen R.; Gao J.; Chen H. M.; Dai L.; Liu B. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Sci. Adv. 2016, 2 (4), 1–11. 10.1126/sciadv.1501122. PubMed DOI PMC

Kumar P.; Šilhavík M.; Zafar Z. A.; Červenka J. Contact Resistance Based Tactile Sensor Using Covalently Cross-Linked Graphene Aerogels. Nanoscale 2022, 14 (4), 1440–1451. 10.1039/D1NR06893H. PubMed DOI

Pethsangave D. A.; Wadekar P. H.; Khose R. V.; Some S. Super-Hydrophobic Carrageenan Cross-Linked Graphene Sponge for Recovery of Oil and Organic Solvent from Their Water Mixtures. Polym. Test. 2020, 90, 10674310.1016/j.polymertesting.2020.106743. DOI

Kulal D. K.; Khose R. V.; Pethsangave D. A.; Wadekar P. H.; Some S. Biomass-Derived Lignocellulosic Graphene Composite: Novel Approach for Removal of Oil and Organic Solvent. ChemistrySelect 2019, 4 (15), 4568–4574. 10.1002/slct.201900115. DOI

Khose R. V.; Wadekar P. H.; Pethsangave D. A.; Chakraborty G.; Ray A. K.; Some S. Novel Approach towards the Synthesis of Highly Efficient Flame Retardant Electrode and Oil/Organic Solvent Absorber. Chemosphere 2020, 246, 12578510.1016/j.chemosphere.2019.125785. PubMed DOI

Wu R.; Yu B.; Liu X.; Li H.; Wang W.; Chen L.; Bai Y.; Ming Z.; Yang S.-T. One-Pot Hydrothermal Preparation of Graphene Sponge for the Removal of Oils and Organic Solvents. Appl. Surf. Sci. 2016, 362, 56–62. 10.1016/j.apsusc.2015.11.215. DOI

Šilhavík M.; Kumar P.; Zafar Z. A.; Král R.; Zemenová P.; Falvey A.; Jiříček P.; Houdková J.; Červenka J. High-Temperature Fire Resistance and Self-Extinguishing Behavior of Cellular Graphene. ACS Nano 2022, 16 (11), 19403–19411. 10.1021/acsnano.2c09076. PubMed DOI

Sun Z.; Fang S.; Hu Y. H. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem. Rev. 2020, 120 (18), 10336–10453. 10.1021/acs.chemrev.0c00083. PubMed DOI

Sun H.; Xu Z.; Gao C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25 (18), 2554–2560. 10.1002/adma.201204576. PubMed DOI

Bi H.; Yin K.; Xie X.; Zhou Y.; Wan N.; Xu F.; Banhart F.; Sun L.; Ruoff R. S. Low Temperature Casting of Graphene with High Compressive Strength. Adv. Mater. 2012, 24 (37), 5124–5129. 10.1002/adma.201201519. PubMed DOI

Xu Y.; Sheng K.; Li C.; Shi G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 4 (7), 4324–4330. 10.1021/nn101187z. PubMed DOI

Estevez L.; Kelarakis A.; Gong Q.; Da’as E. H.; Giannelis E. P. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating. J. Am. Chem. Soc. 2011, 133 (16), 6122–6125. 10.1021/ja200244s. PubMed DOI

Srinivas G.; Burress J. W.; Ford J.; Yildirim T. Porous Graphene Oxide Frameworks: Synthesis and Gas Sorption Properties. J. Mater. Chem. 2011, 21 (30), 11323.10.1039/c1jm11699a. DOI

Worsley M. A.; Olson T. Y.; Lee J. R. I.; Willey T. M.; Nielsen M. H.; Roberts S. K.; Pauzauskie P. J.; Biener J.; Satcher J. H.; Baumann T. F. High Surface Area, Sp 2 -Cross-Linked Three-Dimensional Graphene Monoliths. J. Phys. Chem. Lett. 2011, 2 (8), 921–925. 10.1021/jz200223x. PubMed DOI

Zhao X.; Hayner C. M.; Kung M. C.; Kung H. H. Flexible Holey Graphene Paper Electrodes with Enhanced Rate Capability for Energy Storage Applications. ACS Nano 2011, 5 (11), 8739–8749. 10.1021/nn202710s. PubMed DOI

Senyuk B.; Behabtu N.; Martinez A.; Lee T.; Tsentalovich D. E.; Ceriotti G.; Tour J. M.; Pasquali M.; Smalyukh I. I. Three-Dimensional Patterning of Solid Microstructures through Laser Reduction of Colloidal Graphene Oxide in Liquid-Crystalline Dispersions. Nat. Commun. 2015, 6 (1), 7157.10.1038/ncomms8157. PubMed DOI

Chen K.; Chen L.; Chen Y.; Bai H.; Li L. Three-Dimensional Porous Graphene-Based Composite Materials: Electrochemical Synthesis and Application. J. Mater. Chem. 2012, 22 (39), 20968.10.1039/c2jm34816k. DOI

Shu C.; Zhao H.-Y.; Zhao S.; Deng W.; Min P.; Lu X.-H.; Li X.; Yu Z.-Z. Highly Thermally Conductive Phase Change Composites with Anisotropic Graphene/Cellulose Nanofiber Hybrid Aerogels for Efficient Temperature Regulation and Solar-Thermal-Electric Energy Conversion Applications. Compos. Part B Eng. 2023, 248, 11036710.1016/j.compositesb.2022.110367. DOI

Yang J.; Li X.; Han S.; Yang R.; Min P.; Yu Z.-Z. High-Quality Graphene Aerogels for Thermally Conductive Phase Change Composites with Excellent Shape Stability. J. Mater. Chem. A 2018, 6 (14), 5880–5886. 10.1039/C8TA00078F. DOI

Liu P.; Li X.; Min P.; Chang X.; Shu C.; Ding Y.; Yu Z.-Z. 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness. Nano-Micro Lett. 2021, 13 (1), 22.10.1007/s40820-020-00548-5. PubMed DOI PMC

Jiang L.; Fan Z. Design of Advanced Porous Graphene Materials: From Graphene Nanomesh to 3D Architectures. Nanoscale 2014, 6 (4), 1922–1945. 10.1039/C3NR04555B. PubMed DOI

Pei S.; Cheng H.-M. The Reduction of Graphene Oxide. Carbon N. Y. 2012, 50 (9), 3210–3228. 10.1016/j.carbon.2011.11.010. DOI

Gómez-Navarro C.; Meyer J. C.; Sundaram R. S.; Chuvilin A.; Kurasch S.; Burghard M.; Kern K.; Kaiser U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10 (4), 1144–1148. 10.1021/nl9031617. PubMed DOI

Lerf A.; He H.; Forster M.; Klinowski J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102 (23), 4477–4482. 10.1021/jp9731821. DOI

Acik M.; Lee G.; Mattevi C.; Pirkle A.; Wallace R. M.; Chhowalla M.; Cho K.; Chabal Y. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. J. Phys. Chem. C 2011, 115 (40), 19761–19781. 10.1021/jp2052618. DOI

Li C.; Lu Y.; Yan J.; Yu W.; Zhao R.; Du S.; Niu K. Effect of Long-Term Ageing on Graphene Oxide: Structure and Thermal Decomposition. R. Soc. Open Sci. 2021, 8 (12), 20230910.1098/rsos.202309. PubMed DOI PMC

Bai H.; Jiang W.; Kotchey G. P.; Saidi W. A.; Bythell B. J.; Jarvis J. M.; Marshall A. G.; Robinson R. A. S.; Star A. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction. J. Phys. Chem. C 2014, 118 (19), 10519–10529. 10.1021/jp503413s. PubMed DOI PMC

Shams M.; Guiney L. M.; Huang L.; Ramesh M.; Yang X.; Hersam M. C.; Chowdhury I. Influence of Functional Groups on the Degradation of Graphene Oxide Nanomaterials. Environ. Sci. Nano 2019, 6 (7), 2203–2214. 10.1039/C9EN00355J. DOI

Dimiev A. M.; Alemany L. B.; Tour J. M. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. ACS Nano 2013, 7 (1), 576–588. 10.1021/nn3047378. PubMed DOI

Méndez-Romero U. A.; Velasco-Soto M. A.; Licea-Jiménez L.; González-Hernández J.; Pérez-García S. A. Long-term Evolution of the Chemical and Structural Stability of Graphene Oxide after Storage as Solid and as Aqueous Dispersion. Nano Sel. 2021, 2 (11), 2168–2175. 10.1002/nano.202000274. DOI

El-Hossary F. M.; Ghitas A.; El-Rahman A. M. A.; Shahat M. A.; Fawey M. H. The Effective Reduction of Graphene Oxide Films Using RF Oxygen Plasma Treatment. Vacuum 2021, 188, 11015810.1016/j.vacuum.2021.110158. DOI

Kim J. H.; Ko E.; Hwang J.; Pham X.-H.; Lee J. H.; Lee S. H.; Tran V.-K.; Kim J.-H.; Park J.-G.; Choo J.; Han K. N.; Seong G. H. Large-Scale Plasma Patterning of Transparent Graphene Electrode on Flexible Substrates. Langmuir 2015, 31 (9), 2914–2921. 10.1021/la504443a. PubMed DOI

Neustroev E. P.Plasma Treatment of Graphene Oxide. In Graphene Oxide - Applications and Opportunities; InTech: Rijeka, 2018; pp 7–24.

Acik M.; Lee G.; Mattevi C.; Chhowalla M.; Cho K.; Chabal Y. J. Unusual Infrared-Absorption Mechanism in Thermally Reduced Graphene Oxide. Nat. Mater. 2010, 9 (10), 840–845. 10.1038/nmat2858. PubMed DOI

Huang H.-H.; De Silva K. K. H.; Kumara G. R. A.; Yoshimura M. Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide. Sci. Rep. 2018, 8 (1), 6849.10.1038/s41598-018-25194-1. PubMed DOI PMC

García-Bordejé E.; Víctor-Román S.; Sanahuja-Parejo O.; Benito A. M.; Maser W. K. Control of the Microstructure and Surface Chemistry of Graphene Aerogels via PH and Time Manipulation by a Hydrothermal Method. Nanoscale 2018, 10 (7), 3526–3539. 10.1039/C7NR08732B. PubMed DOI

Kim H. G.; Oh I.-K.; Lee S.; Jeon S.; Choi H.; Kim K.; Yang J. H.; Chung J. W.; Lee J.; Kim W.-H.; Lee H.-B.-R. Analysis of Defect Recovery in Reduced Graphene Oxide and Its Application as a Heater for Self-Healing Polymers. ACS Appl. Mater. Interfaces 2019, 11 (18), 16804–16814. 10.1021/acsami.8b19955. PubMed DOI

Gonçalves G.; Vila M.; Bdikin I.; de Andrés A.; Emami N.; Ferreira R. A. S.; Carlos L. D.; Grácio J.; Marques P. A. A. P. Breakdown into Nanoscale of Graphene Oxide: Confined Hot Spot Atomic Reduction and Fragmentation. Sci. Rep. 2014, 4 (1), 6735.10.1038/srep06735. PubMed DOI PMC

Li D.; Müller M. B.; Gilje S.; Kaner R. B.; Wallace G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3 (2), 101–105. 10.1038/nnano.2007.451. PubMed DOI

Li M.; Liu C.; Xie Y.; Cao H.; Zhao H.; Zhang Y. The Evolution of Surface Charge on Graphene Oxide during the Reduction and Its Application in Electroanalysis. Carbon N. Y. 2014, 66, 302–311. 10.1016/j.carbon.2013.09.004. DOI

Stankovich S.; Dikin D. A.; Piner R. D.; Kohlhaas K. A.; Kleinhammes A.; Jia Y.; Wu Y.; Nguyen S. B. T.; Ruoff R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon N. Y. 2007, 45 (7), 1558–1565. 10.1016/j.carbon.2007.02.034. DOI

Nakajima T.; Matsuo Y. Formation Process and Structure of Graphite Oxide. Carbon N. Y. 1994, 32 (3), 469–475. 10.1016/0008-6223(94)90168-6. DOI

Cai W.; Piner R. D.; Stadermann F. J.; Park S.; Shaibat M. A.; Ishii Y.; Yang D.; Velamakanni A.; An S. J.; Stoller M.; An J.; Chen D.; Ruoff R. S. Synthesis and Solid-State NMR Structural Characterization of 13 C-Labeled Graphite Oxide. Science. 2008, 321 (5897), 1815–1817. 10.1126/science.1162369. PubMed DOI

Luo J.; Cote L. J.; Tung V. C.; Tan A. T. L.; Goins P. E.; Wu J.; Huang J. Graphene Oxide Nanocolloids. J. Am. Chem. Soc. 2010, 132 (50), 17667–17669. 10.1021/ja1078943. PubMed DOI

Szabo T.; Maroni P.; Szilagyi I. Size-Dependent Aggregation of Graphene Oxide. Carbon N. Y. 2020, 160, 145–155. 10.1016/j.carbon.2020.01.022. DOI

Bhatt M. D.; Kim H.; Kim G. Various Defects in Graphene: A Review. RSC Adv. 2022, 12 (33), 21520–21547. 10.1039/D2RA01436J. PubMed DOI PMC

Banhart F.; Kotakoski J.; Krasheninnikov A. V. Structural Defects in Graphene. ACS Nano 2011, 5 (1), 26–41. 10.1021/nn102598m. PubMed DOI

Li C.; Shi G. Three-Dimensional Graphene Architectures. Nanoscale 2012, 4 (18), 5549.10.1039/c2nr31467c. PubMed DOI

Šilhavík M.; Kumar P.; Zafar Z. A.; Míšek M.; Čičala M.; Piliarik M.; Červenka J. Anomalous Elasticity and Damping in Covalently Cross-Linked Graphene Aerogels. Commun. Phys. 2022, 5 (1), 27.10.1038/s42005-022-00806-5. DOI

Qi P.; Zhu H.; Borodich F.; Peng Q. A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations. Materials (Basel). 2023, 16 (5), 1800.10.3390/ma16051800. PubMed DOI PMC

Cançado L. G.; Jorio A.; Ferreira E. H. M.; Stavale F.; Achete C. A.; Capaz R. B.; Moutinho M. V. O.; Lombardo A.; Kulmala T. S.; Ferrari A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196. 10.1021/nl201432g. PubMed DOI

Cançado L. G.; Jorio A.; Ferreira E. H. M.; Stavale F.; Achete C. A.; Capaz R. B.; Moutinho M. V. O.; Lombardo A.; Kulmala T. S.; Ferrari A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196. 10.1021/nl201432g. PubMed DOI

Cançado L. G.; Takai K.; Enoki T.; Endo M.; Kim Y. A.; Mizusaki H.; Jorio A.; Coelho L. N.; Magalhães-Paniago R.; Pimenta M. A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88 (16), 163106.10.1063/1.2196057. DOI

Li X. H.; Li X.; Liao K. N.; Min P.; Liu T.; Dasari A.; Yu Z. Z. Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies. ACS Appl. Mater. Interfaces 2016, 8 (48), 33230–33239. 10.1021/acsami.6b12295. PubMed DOI

Cheng Y.; Zhou S.; Hu P.; Zhao G.; Li Y.; Zhang X.; Han W. Enhanced Mechanical, Thermal, and Electric Properties of Graphene Aerogels via Supercritical Ethanol Drying and High-Temperature Thermal Reduction. Sci. Rep. 2017, 7 (1), 1–11. 10.1038/s41598-017-01601-x. PubMed DOI PMC

Datsyuk V.; Kalyva M.; Papagelis K.; Parthenios J.; Tasis D.; Siokou A.; Kallitsis I.; Galiotis C. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon N. Y. 2008, 46 (6), 833–840. 10.1016/j.carbon.2008.02.012. DOI

Bratt A.; Barron A. R.. XPS of Carbon Nanomaterials. In Carbon Nanotubes; Flood D. J., Barron A. R., Eds.; OpenStax CNX: Houston, TX, 2013; pp 77–93.

Barinov A.; Malcioǧlu O. B.; Fabris S.; Sun T.; Gregoratti L.; Dalmiglio M.; Kiskinova M. Initial Stages of Oxidation on Graphitic Surfaces: Photoemission Study and Density Functional Theory Calculations. J. Phys. Chem. C 2009, 113 (21), 9009–9013. 10.1021/jp902051d. DOI

Boukhvalov D. W.; Katsnelson M. I. Modeling of Graphite Oxide. J. Am. Chem. Soc. 2008, 130 (32), 10697–10701. 10.1021/ja8021686. PubMed DOI

Hun S.Thermal Reduction of Graphene Oxide. In Physics and Applications of Graphene - Experiments; InTech: 2011; pp 73–90.

Schniepp H. C.; Li J.-L.; McAllister M. J.; Sai H.; Herrera-Alonso M.; Adamson D. H.; Prud’homme R. K.; Car R.; Saville D. A.; Aksay I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110 (17), 8535–8539. 10.1021/jp060936f. PubMed DOI

Becerril H. A.; Mao J.; Liu Z.; Stoltenberg R. M.; Bao Z.; Chen Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2 (3), 463–470. 10.1021/nn700375n. PubMed DOI

Chen X.; Deng X.; Kim N. Y.; Wang Y.; Huang Y.; Peng L.; Huang M.; Zhang X.; Chen X.; Luo D.; Wang B.; Wu X.; Ma Y.; Lee Z.; Ruoff R. S. Graphitization of Graphene Oxide Films under Pressure. Carbon N. Y. 2018, 132, 294–303. 10.1016/j.carbon.2018.02.049. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...