Universal Strategy for Reversing Aging and Defects in Graphene Oxide for Highly Conductive Graphene Aerogels
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37313117
PubMed Central
PMC10258840
DOI
10.1021/acs.jpcc.3c01534
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The production of highly stable, defect-free, and electrically conducting 3D graphene structures from graphene oxide precursors is challenging. This is because graphene oxide is a metastable material whose structure and chemistry evolve due to aging. Aging changes the relative composition of oxygen functional groups attached to the graphene oxide and negatively impacts the fabrication and properties of reduced graphene oxide. Here, we report a universal strategy to reverse the aging of graphene oxide precursors using oxygen plasma treatment. This treatment decreases the size of graphene oxide flakes and restores negative zeta potential and suspension stability in water, enabling the fabrication of compact and mechanically stable graphene aerogels using hydrothermal synthesis. Moreover, we employ high-temperature annealing to remove oxygen-containing functionalities and repair the lattice defects in reduced graphene oxide. This method allows obtaining highly electrically conducting graphene aerogels with electrical conductivity of 390 S/m and low defect density. The role of carboxyl, hydroxyl, epoxide, and ketonic oxygen species is thoroughly investigated using X-ray photoelectron and Raman spectroscopies. Our study provides unique insight into the chemical transformations occurring during the aging and thermal reduction of graphene oxide from room temperature up to 2700 °C.
Zobrazit více v PubMed
Mkhoyan K. A.; Contryman A. W.; Silcox J.; Stewart D. A.; Eda G.; Mattevi C.; Miller S.; Chhowalla M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9 (3), 1058–1063. 10.1021/nl8034256. PubMed DOI
Dreyer D. R.; Park S.; Bielawski C. W.; Ruoff R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39 (1), 228–240. 10.1039/B917103G. PubMed DOI
Chen D.; Feng H.; Li J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112 (11), 6027–6053. 10.1021/cr300115g. PubMed DOI
Compton O. C.; Nguyen S. T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6 (6), 711–723. 10.1002/smll.200901934. PubMed DOI
Gorgolis G.; Galiotis C. Graphene Aerogels: A Review. 2D Mater. 2017, 4 (3), 03200110.1088/2053-1583/aa7883. DOI
Kotal M.; Kim J.; Oh J.; Oh I.-K. Recent Progress in Multifunctional Graphene Aerogels. Front. Mater. 2016, 3, 29.10.3389/fmats.2016.00029. DOI
Luo S.; Samad Y. A.; Chan V.; Liao K. Cellular Graphene: Fabrication, Mechanical Properties, and Strain-Sensing Applications. Matter 2019, 1 (5), 1148–1202. 10.1016/j.matt.2019.10.001. DOI
Ren L.; Hui K. N.; Hui K. S.; Liu Y.; Qi X.; Zhong J.; Du Y.; Yang J. 3D Hierarchical Porous Graphene Aerogel with Tunable Meso-Pores on Graphene Nanosheets for High-Performance Energy Storage. Sci. Rep. 2015, 5 (1), 14229.10.1038/srep14229. PubMed DOI PMC
Ping Y.; Gong Y.; Fu Q.; Pan C. Preparation of Three-Dimensional Graphene Foam for High Performance Supercapacitors. Prog. Nat. Sci. Mater. Int. 2017, 27 (2), 177–181. 10.1016/j.pnsc.2017.03.005. DOI
Yang H. B.; Miao J.; Hung S.-F.; Chen J.; Tao H. B.; Wang X.; Zhang L.; Chen R.; Gao J.; Chen H. M.; Dai L.; Liu B. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Sci. Adv. 2016, 2 (4), 1–11. 10.1126/sciadv.1501122. PubMed DOI PMC
Kumar P.; Šilhavík M.; Zafar Z. A.; Červenka J. Contact Resistance Based Tactile Sensor Using Covalently Cross-Linked Graphene Aerogels. Nanoscale 2022, 14 (4), 1440–1451. 10.1039/D1NR06893H. PubMed DOI
Pethsangave D. A.; Wadekar P. H.; Khose R. V.; Some S. Super-Hydrophobic Carrageenan Cross-Linked Graphene Sponge for Recovery of Oil and Organic Solvent from Their Water Mixtures. Polym. Test. 2020, 90, 10674310.1016/j.polymertesting.2020.106743. DOI
Kulal D. K.; Khose R. V.; Pethsangave D. A.; Wadekar P. H.; Some S. Biomass-Derived Lignocellulosic Graphene Composite: Novel Approach for Removal of Oil and Organic Solvent. ChemistrySelect 2019, 4 (15), 4568–4574. 10.1002/slct.201900115. DOI
Khose R. V.; Wadekar P. H.; Pethsangave D. A.; Chakraborty G.; Ray A. K.; Some S. Novel Approach towards the Synthesis of Highly Efficient Flame Retardant Electrode and Oil/Organic Solvent Absorber. Chemosphere 2020, 246, 12578510.1016/j.chemosphere.2019.125785. PubMed DOI
Wu R.; Yu B.; Liu X.; Li H.; Wang W.; Chen L.; Bai Y.; Ming Z.; Yang S.-T. One-Pot Hydrothermal Preparation of Graphene Sponge for the Removal of Oils and Organic Solvents. Appl. Surf. Sci. 2016, 362, 56–62. 10.1016/j.apsusc.2015.11.215. DOI
Šilhavík M.; Kumar P.; Zafar Z. A.; Král R.; Zemenová P.; Falvey A.; Jiříček P.; Houdková J.; Červenka J. High-Temperature Fire Resistance and Self-Extinguishing Behavior of Cellular Graphene. ACS Nano 2022, 16 (11), 19403–19411. 10.1021/acsnano.2c09076. PubMed DOI
Sun Z.; Fang S.; Hu Y. H. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem. Rev. 2020, 120 (18), 10336–10453. 10.1021/acs.chemrev.0c00083. PubMed DOI
Sun H.; Xu Z.; Gao C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25 (18), 2554–2560. 10.1002/adma.201204576. PubMed DOI
Bi H.; Yin K.; Xie X.; Zhou Y.; Wan N.; Xu F.; Banhart F.; Sun L.; Ruoff R. S. Low Temperature Casting of Graphene with High Compressive Strength. Adv. Mater. 2012, 24 (37), 5124–5129. 10.1002/adma.201201519. PubMed DOI
Xu Y.; Sheng K.; Li C.; Shi G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 4 (7), 4324–4330. 10.1021/nn101187z. PubMed DOI
Estevez L.; Kelarakis A.; Gong Q.; Da’as E. H.; Giannelis E. P. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating. J. Am. Chem. Soc. 2011, 133 (16), 6122–6125. 10.1021/ja200244s. PubMed DOI
Srinivas G.; Burress J. W.; Ford J.; Yildirim T. Porous Graphene Oxide Frameworks: Synthesis and Gas Sorption Properties. J. Mater. Chem. 2011, 21 (30), 11323.10.1039/c1jm11699a. DOI
Worsley M. A.; Olson T. Y.; Lee J. R. I.; Willey T. M.; Nielsen M. H.; Roberts S. K.; Pauzauskie P. J.; Biener J.; Satcher J. H.; Baumann T. F. High Surface Area, Sp 2 -Cross-Linked Three-Dimensional Graphene Monoliths. J. Phys. Chem. Lett. 2011, 2 (8), 921–925. 10.1021/jz200223x. PubMed DOI
Zhao X.; Hayner C. M.; Kung M. C.; Kung H. H. Flexible Holey Graphene Paper Electrodes with Enhanced Rate Capability for Energy Storage Applications. ACS Nano 2011, 5 (11), 8739–8749. 10.1021/nn202710s. PubMed DOI
Senyuk B.; Behabtu N.; Martinez A.; Lee T.; Tsentalovich D. E.; Ceriotti G.; Tour J. M.; Pasquali M.; Smalyukh I. I. Three-Dimensional Patterning of Solid Microstructures through Laser Reduction of Colloidal Graphene Oxide in Liquid-Crystalline Dispersions. Nat. Commun. 2015, 6 (1), 7157.10.1038/ncomms8157. PubMed DOI
Chen K.; Chen L.; Chen Y.; Bai H.; Li L. Three-Dimensional Porous Graphene-Based Composite Materials: Electrochemical Synthesis and Application. J. Mater. Chem. 2012, 22 (39), 20968.10.1039/c2jm34816k. DOI
Shu C.; Zhao H.-Y.; Zhao S.; Deng W.; Min P.; Lu X.-H.; Li X.; Yu Z.-Z. Highly Thermally Conductive Phase Change Composites with Anisotropic Graphene/Cellulose Nanofiber Hybrid Aerogels for Efficient Temperature Regulation and Solar-Thermal-Electric Energy Conversion Applications. Compos. Part B Eng. 2023, 248, 11036710.1016/j.compositesb.2022.110367. DOI
Yang J.; Li X.; Han S.; Yang R.; Min P.; Yu Z.-Z. High-Quality Graphene Aerogels for Thermally Conductive Phase Change Composites with Excellent Shape Stability. J. Mater. Chem. A 2018, 6 (14), 5880–5886. 10.1039/C8TA00078F. DOI
Liu P.; Li X.; Min P.; Chang X.; Shu C.; Ding Y.; Yu Z.-Z. 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness. Nano-Micro Lett. 2021, 13 (1), 22.10.1007/s40820-020-00548-5. PubMed DOI PMC
Jiang L.; Fan Z. Design of Advanced Porous Graphene Materials: From Graphene Nanomesh to 3D Architectures. Nanoscale 2014, 6 (4), 1922–1945. 10.1039/C3NR04555B. PubMed DOI
Pei S.; Cheng H.-M. The Reduction of Graphene Oxide. Carbon N. Y. 2012, 50 (9), 3210–3228. 10.1016/j.carbon.2011.11.010. DOI
Gómez-Navarro C.; Meyer J. C.; Sundaram R. S.; Chuvilin A.; Kurasch S.; Burghard M.; Kern K.; Kaiser U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10 (4), 1144–1148. 10.1021/nl9031617. PubMed DOI
Lerf A.; He H.; Forster M.; Klinowski J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102 (23), 4477–4482. 10.1021/jp9731821. DOI
Acik M.; Lee G.; Mattevi C.; Pirkle A.; Wallace R. M.; Chhowalla M.; Cho K.; Chabal Y. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. J. Phys. Chem. C 2011, 115 (40), 19761–19781. 10.1021/jp2052618. DOI
Li C.; Lu Y.; Yan J.; Yu W.; Zhao R.; Du S.; Niu K. Effect of Long-Term Ageing on Graphene Oxide: Structure and Thermal Decomposition. R. Soc. Open Sci. 2021, 8 (12), 20230910.1098/rsos.202309. PubMed DOI PMC
Bai H.; Jiang W.; Kotchey G. P.; Saidi W. A.; Bythell B. J.; Jarvis J. M.; Marshall A. G.; Robinson R. A. S.; Star A. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction. J. Phys. Chem. C 2014, 118 (19), 10519–10529. 10.1021/jp503413s. PubMed DOI PMC
Shams M.; Guiney L. M.; Huang L.; Ramesh M.; Yang X.; Hersam M. C.; Chowdhury I. Influence of Functional Groups on the Degradation of Graphene Oxide Nanomaterials. Environ. Sci. Nano 2019, 6 (7), 2203–2214. 10.1039/C9EN00355J. DOI
Dimiev A. M.; Alemany L. B.; Tour J. M. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. ACS Nano 2013, 7 (1), 576–588. 10.1021/nn3047378. PubMed DOI
Méndez-Romero U. A.; Velasco-Soto M. A.; Licea-Jiménez L.; González-Hernández J.; Pérez-García S. A. Long-term Evolution of the Chemical and Structural Stability of Graphene Oxide after Storage as Solid and as Aqueous Dispersion. Nano Sel. 2021, 2 (11), 2168–2175. 10.1002/nano.202000274. DOI
El-Hossary F. M.; Ghitas A.; El-Rahman A. M. A.; Shahat M. A.; Fawey M. H. The Effective Reduction of Graphene Oxide Films Using RF Oxygen Plasma Treatment. Vacuum 2021, 188, 11015810.1016/j.vacuum.2021.110158. DOI
Kim J. H.; Ko E.; Hwang J.; Pham X.-H.; Lee J. H.; Lee S. H.; Tran V.-K.; Kim J.-H.; Park J.-G.; Choo J.; Han K. N.; Seong G. H. Large-Scale Plasma Patterning of Transparent Graphene Electrode on Flexible Substrates. Langmuir 2015, 31 (9), 2914–2921. 10.1021/la504443a. PubMed DOI
Neustroev E. P.Plasma Treatment of Graphene Oxide. In Graphene Oxide - Applications and Opportunities; InTech: Rijeka, 2018; pp 7–24.
Acik M.; Lee G.; Mattevi C.; Chhowalla M.; Cho K.; Chabal Y. J. Unusual Infrared-Absorption Mechanism in Thermally Reduced Graphene Oxide. Nat. Mater. 2010, 9 (10), 840–845. 10.1038/nmat2858. PubMed DOI
Huang H.-H.; De Silva K. K. H.; Kumara G. R. A.; Yoshimura M. Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide. Sci. Rep. 2018, 8 (1), 6849.10.1038/s41598-018-25194-1. PubMed DOI PMC
García-Bordejé E.; Víctor-Román S.; Sanahuja-Parejo O.; Benito A. M.; Maser W. K. Control of the Microstructure and Surface Chemistry of Graphene Aerogels via PH and Time Manipulation by a Hydrothermal Method. Nanoscale 2018, 10 (7), 3526–3539. 10.1039/C7NR08732B. PubMed DOI
Kim H. G.; Oh I.-K.; Lee S.; Jeon S.; Choi H.; Kim K.; Yang J. H.; Chung J. W.; Lee J.; Kim W.-H.; Lee H.-B.-R. Analysis of Defect Recovery in Reduced Graphene Oxide and Its Application as a Heater for Self-Healing Polymers. ACS Appl. Mater. Interfaces 2019, 11 (18), 16804–16814. 10.1021/acsami.8b19955. PubMed DOI
Gonçalves G.; Vila M.; Bdikin I.; de Andrés A.; Emami N.; Ferreira R. A. S.; Carlos L. D.; Grácio J.; Marques P. A. A. P. Breakdown into Nanoscale of Graphene Oxide: Confined Hot Spot Atomic Reduction and Fragmentation. Sci. Rep. 2014, 4 (1), 6735.10.1038/srep06735. PubMed DOI PMC
Li D.; Müller M. B.; Gilje S.; Kaner R. B.; Wallace G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3 (2), 101–105. 10.1038/nnano.2007.451. PubMed DOI
Li M.; Liu C.; Xie Y.; Cao H.; Zhao H.; Zhang Y. The Evolution of Surface Charge on Graphene Oxide during the Reduction and Its Application in Electroanalysis. Carbon N. Y. 2014, 66, 302–311. 10.1016/j.carbon.2013.09.004. DOI
Stankovich S.; Dikin D. A.; Piner R. D.; Kohlhaas K. A.; Kleinhammes A.; Jia Y.; Wu Y.; Nguyen S. B. T.; Ruoff R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon N. Y. 2007, 45 (7), 1558–1565. 10.1016/j.carbon.2007.02.034. DOI
Nakajima T.; Matsuo Y. Formation Process and Structure of Graphite Oxide. Carbon N. Y. 1994, 32 (3), 469–475. 10.1016/0008-6223(94)90168-6. DOI
Cai W.; Piner R. D.; Stadermann F. J.; Park S.; Shaibat M. A.; Ishii Y.; Yang D.; Velamakanni A.; An S. J.; Stoller M.; An J.; Chen D.; Ruoff R. S. Synthesis and Solid-State NMR Structural Characterization of 13 C-Labeled Graphite Oxide. Science. 2008, 321 (5897), 1815–1817. 10.1126/science.1162369. PubMed DOI
Luo J.; Cote L. J.; Tung V. C.; Tan A. T. L.; Goins P. E.; Wu J.; Huang J. Graphene Oxide Nanocolloids. J. Am. Chem. Soc. 2010, 132 (50), 17667–17669. 10.1021/ja1078943. PubMed DOI
Szabo T.; Maroni P.; Szilagyi I. Size-Dependent Aggregation of Graphene Oxide. Carbon N. Y. 2020, 160, 145–155. 10.1016/j.carbon.2020.01.022. DOI
Bhatt M. D.; Kim H.; Kim G. Various Defects in Graphene: A Review. RSC Adv. 2022, 12 (33), 21520–21547. 10.1039/D2RA01436J. PubMed DOI PMC
Banhart F.; Kotakoski J.; Krasheninnikov A. V. Structural Defects in Graphene. ACS Nano 2011, 5 (1), 26–41. 10.1021/nn102598m. PubMed DOI
Li C.; Shi G. Three-Dimensional Graphene Architectures. Nanoscale 2012, 4 (18), 5549.10.1039/c2nr31467c. PubMed DOI
Šilhavík M.; Kumar P.; Zafar Z. A.; Míšek M.; Čičala M.; Piliarik M.; Červenka J. Anomalous Elasticity and Damping in Covalently Cross-Linked Graphene Aerogels. Commun. Phys. 2022, 5 (1), 27.10.1038/s42005-022-00806-5. DOI
Qi P.; Zhu H.; Borodich F.; Peng Q. A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations. Materials (Basel). 2023, 16 (5), 1800.10.3390/ma16051800. PubMed DOI PMC
Cançado L. G.; Jorio A.; Ferreira E. H. M.; Stavale F.; Achete C. A.; Capaz R. B.; Moutinho M. V. O.; Lombardo A.; Kulmala T. S.; Ferrari A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196. 10.1021/nl201432g. PubMed DOI
Cançado L. G.; Jorio A.; Ferreira E. H. M.; Stavale F.; Achete C. A.; Capaz R. B.; Moutinho M. V. O.; Lombardo A.; Kulmala T. S.; Ferrari A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196. 10.1021/nl201432g. PubMed DOI
Cançado L. G.; Takai K.; Enoki T.; Endo M.; Kim Y. A.; Mizusaki H.; Jorio A.; Coelho L. N.; Magalhães-Paniago R.; Pimenta M. A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88 (16), 163106.10.1063/1.2196057. DOI
Li X. H.; Li X.; Liao K. N.; Min P.; Liu T.; Dasari A.; Yu Z. Z. Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies. ACS Appl. Mater. Interfaces 2016, 8 (48), 33230–33239. 10.1021/acsami.6b12295. PubMed DOI
Cheng Y.; Zhou S.; Hu P.; Zhao G.; Li Y.; Zhang X.; Han W. Enhanced Mechanical, Thermal, and Electric Properties of Graphene Aerogels via Supercritical Ethanol Drying and High-Temperature Thermal Reduction. Sci. Rep. 2017, 7 (1), 1–11. 10.1038/s41598-017-01601-x. PubMed DOI PMC
Datsyuk V.; Kalyva M.; Papagelis K.; Parthenios J.; Tasis D.; Siokou A.; Kallitsis I.; Galiotis C. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon N. Y. 2008, 46 (6), 833–840. 10.1016/j.carbon.2008.02.012. DOI
Bratt A.; Barron A. R.. XPS of Carbon Nanomaterials. In Carbon Nanotubes; Flood D. J., Barron A. R., Eds.; OpenStax CNX: Houston, TX, 2013; pp 77–93.
Barinov A.; Malcioǧlu O. B.; Fabris S.; Sun T.; Gregoratti L.; Dalmiglio M.; Kiskinova M. Initial Stages of Oxidation on Graphitic Surfaces: Photoemission Study and Density Functional Theory Calculations. J. Phys. Chem. C 2009, 113 (21), 9009–9013. 10.1021/jp902051d. DOI
Boukhvalov D. W.; Katsnelson M. I. Modeling of Graphite Oxide. J. Am. Chem. Soc. 2008, 130 (32), 10697–10701. 10.1021/ja8021686. PubMed DOI
Hun S.Thermal Reduction of Graphene Oxide. In Physics and Applications of Graphene - Experiments; InTech: 2011; pp 73–90.
Schniepp H. C.; Li J.-L.; McAllister M. J.; Sai H.; Herrera-Alonso M.; Adamson D. H.; Prud’homme R. K.; Car R.; Saville D. A.; Aksay I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110 (17), 8535–8539. 10.1021/jp060936f. PubMed DOI
Becerril H. A.; Mao J.; Liu Z.; Stoltenberg R. M.; Bao Z.; Chen Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2 (3), 463–470. 10.1021/nn700375n. PubMed DOI
Chen X.; Deng X.; Kim N. Y.; Wang Y.; Huang Y.; Peng L.; Huang M.; Zhang X.; Chen X.; Luo D.; Wang B.; Wu X.; Ma Y.; Lee Z.; Ruoff R. S. Graphitization of Graphene Oxide Films under Pressure. Carbon N. Y. 2018, 132, 294–303. 10.1016/j.carbon.2018.02.049. DOI