• This record comes from PubMed

MIR204 n.37C>T variant as a cause of chorioretinal dystrophy variably associated with iris coloboma, early-onset cataracts and congenital glaucoma

. 2023 Oct ; 104 (4) : 418-426. [epub] 20230615

Language English Country Denmark Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Four members of a three-generation Czech family with early-onset chorioretinal dystrophy were shown to be heterozygous carriers of the n.37C>T in MIR204. The identification of this previously reported pathogenic variant confirms the existence of a distinct clinical entity caused by a sequence change in MIR204. Chorioretinal dystrophy was variably associated with iris coloboma, congenital glaucoma, and premature cataracts extending the phenotypic range of the condition. In silico analysis of the n.37C>T variant revealed 713 novel targets. Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants. Haplotype analysis excluded relatedness with the original family reported to harbour the n.37C>T variant in MIR204. Identification of a second independent family confirms the existence of a distinct MIR204-associated clinical entity and suggests that the phenotype may also involve congenital glaucoma.

See more in PubMed

Conte I, Hadfield KD, Barbato S, et al. MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma. Proc Natl Acad Sci U S A. 2015;112(25):3236-3245.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297.

Conte I, Carrella S, Avellino R, et al. miR-204 is required for lens and retinal development via Meis2 targeting. Proc Natl Acad Sci U S A. 2010;107(35):15491-15496.

Xie Q, Ung D, Khafizov K, Fiser A, Cvekl A. Gene regulation by PAX6: structural-functional correlations of missense mutants and transcriptional control of Trpm3/miR-204. Mol Vis. 2014;20:270-282.

Shaham O, Gueta K, Mor E, et al. Pax6 regulates gene expression in the vertebrate lens through miR-204. PLoS Genet. 2013;9(3):e1003357.

Rocca C, Tiberi L, Bargiacchi S, et al. Expanding the spectrum of oculocutaneous albinism: does isolated foveal hypoplasia really exist? Int J Mol Sci. 2022;23(14):7825.

Simeonov DR, Wang X, Wang C, et al. DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics. Hum Mutat. 2013;34(6):827-835.

Thomas MG, Kumar A, Mohammad S, et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology. 2011;118(8):1653-1660.

den Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37(6):564-569.

McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303.

Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443.

Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-26.

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet med. 2015;17(5):405-424.

Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D131.

Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18.

Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221.

Martin AR, Williams E, Foulger RE, et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019;51(11):1560-1565.

Loftus SK, Lundh L, Watkins-Chow DE, et al. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat. 2021;42(10):1239-1253.

Lasseaux E, Plaisant C, Michaud V, et al. Molecular characterization of a series of 990 index patients with albinism. Pigment Cell Melanoma Res. 2018;31(4):466-474.

Arshad MW, Harlalka GV, Lin S, et al. Mutations in TYR and OCA2 associated with oculocutaneous albinism in Pakistani families. Meta Gene. 2018;17:48-55.

Zhang L, Xu B, Zhong Y, et al. A de novo mutation of P gene causes oculocutaneous albinism type 2 with prenatal diagnosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013;30(3):318-321.

Yang Q, Yi S, Li M, et al. Genetic analyses of oculocutaneous albinism types 1 and 2 with four novel mutations. BMC med Genet. 2019;20(1):106.

Ullah MI. Clinical and mutation Spectrum of autosomal recessive non-syndromic oculocutaneous albinism (nsOCA) in Pakistan: a review. Genes (Basel). 2022;13(6):1072.

Hutton SM, Spritz RA. Comprehensive analysis of oculocutaneous albinism among non-Hispanic caucasians shows that OCA1 is the most prevalent OCA type. J Invest Dermatol. 2008;128(10):2442-2450.

Marti A, Lasseaux E, Ezzedine K, et al. Lessons of a day hospital: comprehensive assessment of patients with albinism in a European setting. Pigment Cell Melanoma Res. 2018;31(2):318-329.

Kawahara Y. Human diseases caused by germline and somatic abnormalities in microRNA and microRNA-related genes. Congenit Anom (Kyoto). 2014;54(1):12-21.

Grigelioniene G, Suzuki HI, Taylan F, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Nat med. 2019;25(4):583-590.

Bhattacharya A, Cui Y. Systematic prediction of the impacts of mutations in MicroRNA seed sequences. J Integr Bioinform. 2017;14(1):20170001.

Avellino R, Carrella S, Pirozzi M, et al. miR-204 targeting of Ankrd13A controls both mesenchymal neural crest and lens cell migration. PLoS One. 2013;8(4):e61099.

Conte I, Merella S, Garcia-Manteiga JM, et al. The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance. Nucleic Acids Res. 2014;42(12):7793-7806.

Fishman ES, Han JS, La Torre A. Oscillatory behaviors of microRNA networks: emerging roles in retinal development. Front Cell Dev Biol. 2022;10:831750.

Krol J, Busskamp V, Markiewicz I, et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell. 2010;141(4):618-631.

Perea-Romero I, Gordo G, Iancu IF, et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci Rep. 2021;11(1):1526.

Xu S. microRNAs and inherited retinal dystrophies. Proc Natl Acad Sci U S A. 2015;112(29):8805-8806.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...